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Objective: Identification of SCD risk is important in the general population from a public
health perspective. The objective is to summarize and appraise the available prediction
models for the risk of SCD among the general population.

Methods:Data were obtained searching six electronic databases and reporting prediction
models of SCD risk in the general population. Studies with duplicate cohorts and missing
information were excluded from the meta-analysis.

Results: Out of 8,407 studies identified, fifteen studies were included in the systematic
review, while five studies were included in the meta-analysis. The Cox proportional hazards
model was used in thirteen studies (96.67%). Study locations were limited to Europe and
the United States. Our pooled meta-analyses included four predictors: diabetes mellitus
(ES = 2.69, 95%CI: 1.93, 3.76), QRS duration (ES = 1.16, 95%CI: 1.06, 1.26), spatial QRS-
T angle (ES = 1.46, 95%CI: 1.27, 1.69) and factional shortening (ES = 1.37, 95%
CI: 1.15, 1.64).

Conclusion: Risk prediction model may be useful as an adjunct for risk stratification
strategies for SCD in the general population. Further studies among people except for
white participants and more accessible factors are necessary to explore.
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INTRODUCTION

Sudden cardiac arrest (SCD) is a serious complication of atherosclerosis. SCD is defined as an abrupt
and unexpected loss of cardiovascular function resulting in circulatory collapse and death [1].
Generally, sudden cardiac arrest (SCA) has two distinct outcomes: SCD or aborted SCD (i.e., sudden
cardiac arrest survivors) [2]. SCA mortality is approximately 90% and significant functional and/or
cognitive disabilities often persist among those who survive [3].

SCD accounts for over 4-5 million deaths a year [4], and is the leading cause of death, accounting
for 10%–20% of deaths globally [5]. In the general population, the relative risk of SCD is significantly
lower than in patients with cardiac disease [6]. Despite this, the absolute number of people who suffer
from SCA/SCD is greater than those with cardiac disease due to the sheer size of the population
at risk [7].

Among individuals in the general population, up to 50% of SCD is their first manifestation of
cardiac disease [8, 9]. Symptoms of SCD typically appear soon after the onset of the first
symptoms, leaving little or no time for effective medical interventions [10]. Therefore,
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identifying individuals at risk for SCD is important from a
clinical and public health perspective. The left ventricular
ejection fraction (LVEF), which is currently used to identify
candidates for primary prevention implantable cardioverter-
defibrillators (ICDs), has significant limitation [1]. There have
been numerous proposals for new tools for risk stratification to
date. However, systematic reviews or meta-analyses
inadequately explored predictors of SCD risk. To our
knowledge, only one systematic review about risk prediction
models for SCD, which included articles until 2019 [11]. Our
objective was to summarize and appraise available prediction
models for SCD risk in the current systematic review and
meta-analysis.

METHODS

The systematic review and meta-analysis were conducted in
accordance with the Preferred Reporting Items for Systematic
Reviews and Meta-Analysis (PRISMA) guidelines [12]. The study
protocol was registered on the international prospective register
of systematic reviews PROSPERO (ID number
CRD42023415462).

Literature Search Strategy
We performed an electronic literature search of PubMed,
Embase, Cochrane Library (including CENTRAL, NIH
registry, and CTRI), Web of Science, CINAHL and
OpenGrey databases with no date restrictions. Searches were
performed on 1 March 2023. Search terms were constructed by
combining Medical Subject Headings (MeSH) with
corresponding free words associated with the following
keywords: “sudden cardiac death,” “ventricular fibrillation,”
“ventricular tachycardia,” “risk assessment,” “risk prediction”
etc., The search strategy was customized for each database
(Supplementary Appendix SI). Animal studies and book/
conference materials were excluded, and non-English articles
were excluded.

Study Selection
The study selection was performed by two authors (Y.L. and
Z.H.M.) independently in accordance with the preset inclusion
and exclusion criteria. Inter-rater reliability values were
calculated using Cohen’s Kappa (K). Any disagreements were
settled by consulting a third reviewer (C.X.C.).

Exclusion Criteria:

• The outcomes of the study were not ventricular fibrillation,
ventricular tachycardia, SCA and SCD.

• Type of study: conference proceedings, editorials, reviews,
meta-analysis, protocol and short reports.

• Imminent prediction of SCD risk (<1 day).
• That did not develop a prediction model.
• Only genetic status analysis or image analysis.
• The study population was not the general population (aged
18 and older).

Meta-analyses were conducted only when the identified
predictors were statistically (i.e., type of effect estimates) and
clinically homogeneous (e.g., similar reference groups for
categorical variables). Meta-analysis exclusion criteria:

• Studies missing statistical information required for a forest
plot analysis.

• When duplicate cohorts are identified using the criteria
below, the study with the largest sample size is included in
the meta-analysis: (i) A study cohort taken from the same
registry as another study cohort. (ii) The same outcome (s)
were analyzed. (iii) Overlap between study periods.

Data Extraction
Two investigators (Y.L. and Z.H.M.) independently extracted the
data from the selected studies. Third authors (C.X.C.) were
consulted to resolve disagreements. The following information
was recorded: the name of the first author, publication year,
journal, study location, design, study type, sample size and the
number of cases of development population and validate
population, follow-up years, model’s specifications
(i.e., intercept, type and the effect size (ES), and the
corresponding 95% Confidence Intervals or CIs), and
performance measures (i.e., C statistic, etc.).

Risk of Bias Assessment
We used the Prediction Model Study Risk of Bias Assessment
Tool (PROBAST) to assess bias. PROBAST was designed
specifically to evaluate the risk of bias associated with a
prediction model [13]. PROBAST consists of four domains:
participants, predictors, outcomes, and analysis, with a total of
20 signaling questions. Based on the answers to the signaling
questions, each domain was classified as low, high, or unclear risk
of bias. Two review authors (Y.L. and Z.H.M.) independently
scored the key studies, with discrepancies settled by C.X.C.

Statistical Analysis
ESs included hazard ratios (HRs) and risk ratios (RRs). When two
or more studies with no duplicate cohorts explored the same
predictive variable in the systematic review, the HRs were pooled
in the meta-analysis and RRs were considered equivalent [14, 15].
The inconsistency index (I2 statistic) was used to assess
heterogeneity. We considered I2 of <30% to indicate low
heterogeneity between studies, a value of 30%–60% to indicate
moderate heterogeneity, and a value of >60% to indicate
substantial heterogeneity. Substantial heterogeneity was defined
as an I2 value >50%. When trials were heterogeneous, the
random-effects model was used to calculate the pooled HRs
and 95% CI. In all other cases, fixed-effects models were used.
Forest plots were used to display pooled outcomes.

In the study protocol, it was initially intended to conduct
subgroup analyses to examine the effects of various confounding
variables on heterogeneity within the pooled data. In addition, if
studies were suspected of publication bias, we planned to conduct
a sensitivity analysis after excluding outliers. Due to the fact that
all pooled analyses contained two studies, this was not possible.
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All statistical analyses were performed in STATA software
(version 12.0, StataCorp LP, College Station, Texas,
United States), and two-sided p values of <0.05 were regarded
as indicate nominal statistical significance.

RESULTS

Study Selection
There were 8,448 titles and abstracts found in the literature
search. Finally, fifteen studies were included in the systematic
review, and five studies were eligible for the meta-analysis. A
flowchart (Figure 1) illustrates the detailed selection process and
reasons for exclusion.

Characteristics of Included Studies
The key characteristics of included studies are summarized in
Table 1. A systematic review of fifteen studies included
149,076 individuals (range 42–100 years old, 49.49% males)
and 3,843 cases of SCD. The median follow-up was
14.10 years (range: 6.30–25.40). All studies were published
between 2012 and 2023. The remaining studies were
conducted in the United States (8, 53.33%), Finland (4,
26.67%), Netherlands (2, 13.33%) and China (1, 6.67%). There
were fourteen cohort studies (93.33%) and 1 population-based
case-control study (6.67%). Four studies mentioned no data are
available in data availability statement, other studies did not
mention data availability. The Definition of SCD of included
studies are summarized in Supplementary Table S1.

FIGURE 1 | Preferred Reporting Items for Systematic Reviews and Meta-Analysis flow diagram of the study selection process (China, 2024). Note: Inter-rater
reliability values were calculated using Cohen’s Kappa (K).
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TABLE 1 | Characteristics of included studies (China, 2024).

First author Publication
year

Study
location

Design Study type Development Validate Follow-
up yearsa

Model name

P C Men (%) Age (y) P C Men
(%)

Age (y)

Sudhir Kurl 2012 Finland Cohort study Developed
model

2,049 156 100 52.7 ± 5.1 — — — — 19 Cox proportional hazards
model

Laukkanen
Jari A

2014 Finland Cohort study Developed
model

905 63 100 50.5 ± 6.6 — — — — 20 Cox proportional hazards
model

Sudhir Kurl 2015 Finland Cohort study Developed
model

2,358 205 100 52.8 ± 5.0 — — 20 Cox proportional hazards
model

Jonathan W.
Waks

2016 United States Cohort study Developed
model

20,177 291 44 59.3 ± 10 — — 14.1 Cox proportional hazards
model

Rajat Deo 2016 United States Cohort study Developed and
validated model

13,677 171 44 54.0 ± 6 4,207 174 39 72.0 ± 5 13.1 Cox proportional hazards
model

Suma H.
Konety

2016 United States Cohort study Developed and
validated model

2,383 44 36 58.8 ± 5.7 5,366 275 42 72.9 ±
5.6

7.3 Cox proportional hazards
model

Maartje N.
Niemeijer

2016 Netherlands Cohort study Developed
model

4,686 68 42 71.8 ± 7.4 — — — — 6.3 Cox proportional hazards
model

Takeki Suzuki 2016 United States Cohort study Developed
model

13,070 205 33 (SCD);
66

(no SCD)

59.6 ± 5.5
(SCD); 56.9 ±
5.7 (no SCD)

— — — — 11.2 Cox proportional hazards
model

Aapo L. Aro 2017 United States Population-
based case-
control study

Developed and
validated model

1,258 522 66 65.3 ± 14.5
(case); 65.8 ±
11.5 (control)

15,792 260 55 45–65 - Logistic regression model

Brittany M.
Bogle

2018 United States Cohort study Developed and
validated model

11,335 145 47 54.4 5,626 64 48 48.1 10 Cox proportional hazards
model

Arttu holkeri 2019 Finland Cohort study Developed and
validated model

6,830 123 45.5 51.2 ± 13.9 10,617 115 52.7 44.0 ±
8.5

24.3 Cox proportional hazards
model

Leonardo
Tamariz

2019 United States Cohort study Developed
model

6,447 — — — — — — — — Cox proportional hazards
model

Yun-Jiu
Cheng

2021 United States Cohort study Developed
model

14,708 706 45.6 54.3 — — — — 25.4 Fine and Gray model

Anna C. van
der Burgh

2022 Netherlands Cohort study Developed
model

9,687 243 43.3 65.3 ± 9.9 — — — — 8.9 Cox proportional hazards
and Fine and Gray model

Yun-Yu Chen 2023 China Cohort study Developed
model

2,105 13 47.3 ≥35 — — — — 15 Negative binomial
regression model and Cox
proportional hazard model

ameans median or mean of follow-up years; P means the number of the study population; C means the number of outcomes in the study population.
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Quality of Evidence and Risk of Bias
In assessing the overall bias and applicability of using PROBAST,
twelve studies were considered high risk of bias [16–27] and three
studies as low risk [28–30] (Table 2; Supplementary Figure S1).
The high risk of bias was due to the model handling categorical
predictors inappropriately [21–24], case-control design [22],
inappropriate inclusions and exclusions of participants [16,
29], outcome [24] and overfitting optimism not being
accounted for during analysis [16–21, 24–27]. One study was
scored as high risk for applicability due to outcome [24], whilst
two studies were scored as an unclear risk due to
Participate [5, 24].

Analysis of the Prediction Model
In total, fifteen studies developed models to predict SCD risk, of
which five studies validated the models. The Cox proportional
hazards model was used in thirteen studies (96.67%), the Fine and
Gray model was used in two studies (0.13%), the Logistic
regression model was used in 1 study (0.07%), and the
negative binomial regression model was used in 1 study (0.07%).

The predictors for SCD risk included socio-demographics, risk
factors, family history, clinical history, electrocardiograph (ECG),
serum measure factors, echocardiographic factors and others.
The most frequent predictors were: age (14, 93.33%), diabetes
mellitus (12, 80.00%), smoking (11, 73.33%), systolic blood

TABLE 2 | Prediction model study risk of bias assessment tool scores of fifteen studies meeting inclusion criteria (China, 2024).

First author Risk of bias Applicability Overall applicability Risk of bias

Participate Predictors Outcome Analysis Participant Predictors Outcome

Sudhir Kurl ? + + - + + + - +
Jari A + + + - + + + - +
Sudhir Kurl + + + - + + + - +
Jonathan W. Waks + + + - + + + - +
Rajat Deo + + + + + + + + +
Suma H. Konety + + + + + + + + +
Maartje N. Niemeijer + + + - + + + - +
Takeki Suzuki + + + - + + + - +
Aapo L. Aro - + + - + + + - +
Brittany M. Bogle + + + + + + + + +
Arttu holkeri + + + - + + + - +
Leonardo Tamariz ? + + - ? + - - -
Yun-Jiu Cheng + + + - + + + - +
Anna C. van der Burgh + + + - + + + - +
Yun-Yu Chen ? + + - + + ? - ?

Notes: “+” indicates low risk of bias/low concern for applicability, “-” high risk of bias/high applicability, and “?” unknown risk of bias/low concern for applicability.

FIGURE 2 |C statistic in development and validation of models predicting sudden cardiac death risk in the general population (China, 2024). Notes: “D” indicates C
statistic in Developed model. “V” indicates C statistic in validated model.
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pressure (10, 66.67%) and gender (10, 66.67%). Supplementary
Figure S2 presents the frequency with which each variable was
entered in the final prediction model.

In twelve studies, the C statistic was used to evaluate the model
discrimination. Duringmodel development, the C statistic ranged
from 0.75 to 0.90, while during model validation, the C statistic
ranged from 0.74 to 0.82 (Figure 2). Calibration ofmodel was
assessed using a Hosmer-Lemeshow chi-square test in two of
these studies [28, 30], in which p values in both the derivation and
validation cohort were greater than 0.05.

Pooled Outcomes in the Meta-Analysis
The five studies in the meta-analysis included 61,409 individuals
and 1,730 SCDs. The following variables predicting SCD risk in
the general population had significant ESs with similar
directionality across all studies in which they were significant
(≥two studies): diabetes mellitus, QRS duration, spatial QRS-T
angle and LV function (Figure 3). The meta-analysis included
five studies that examined four predictors of SCD risk. Pooled
results for the two studies demonstrate that diabetes mellitus
increased SCD risk (ES = 2.69, 95%CI: 1.93, 3.76). A fixed effect
estimate was used due to observed heterogeneity (I2 = 20%, p =
0.264). QRS duration (ES = 1.16, 95%CI: 1.06, 1.26) and spatial
QRS-T angle (ES = 1.46, 95%CI: 1.27, 1.69) were shown to

significantly increase SCD risk. Random effects estimate of
QRS duration was applied (I2 = 80%, p = 0.026), and a fixed
effect estimate of QRS duration was used (I2 = 0, p = 0.637).
Factional shortening also predicted a higher SCD risk on pooled
analysis (ES = 1.37, 95%CI: 1.15, 1.64). A fixed effects estimate
was used (I2 = 0, p = 0.881). As only two studies were included in
the meta-analysis of each predictor, no sensitivity analysis
was performed.

DISCUSSION

Key Findings
In this study, fifteen studies were included in the systematic
review, of which five studies were included in the meta-analysis.
Most studies were conducted in Europe and the United States.
We found that the factors for predicting SCD risk included socio-
demographics, risk factors, family history, clinical history,
electrocardiograph (ECG), serum measure factors,
echocardiographic factors, etc. In addition, diabetes mellitus,
QRS duration, spatial QRS-T angle and LV function were
associated with SCD risk in the meta-analysis.

SCD is a major cause of death worldwide, and more than 50%
of SCDs occur in the general population. Even though there has

FIGURE 3 | Forest plots and pooled effect estimates of predictors in models predicting sudden cardiac death risk in the general population (China, 2024). Notes:
Effect size included hazard ratios (HRs) and risk ratios (RRs). Only effect sizes of study by Sudhir Kurl (2012) were RRs. Others were HRs.
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been some progress in predicting risk of SCD in specific diseases,
the greatest challenge lies in identifying the relatively small, high-
risk subgroups within the large general population. The study
summarized and appraised available targeted screening tools for
SCD risk to identify those who may be at risk for SCD at the right
time. The results provide a step toward the identification of SCD
risk in the general population and can contribute to developing
future strategies to prevent SCD in the community. A detailed
evaluation by a cardiologist can be considered for those suspected
of heart disease or risk on initial screening, to optimize the timing
of interventions, and better implement evidence-based
monitoring or management.

Characteristics of Included Studies
Our results show that fifteen studies were published in the past
10 years. A study by Sudhir Kurl et al. examined the relationship
between QRS duration and SCD in a population-based sample of
men using Cox proportional hazards models, which was
published in 2012 [16]. This period was divided into two
stages based on the number of articles: Stage 1, from 2012 to
2015, was considered to be the initial period. Since 2016, stage
2 has been referred to as the development phase. Of note,
5 articles were published in 2016. Research interests in SCD
risk models were prominent.

Predictors of the Model
This finding indicates that a very high-risk group of SCD among
the general population may identified using risk score for
screenings. Alongside a concise history taking and simple
blood test, screening tools including ECG and
echocardiography can be an effective, targeted screening tool
to identify those whomay be at risk for SCD at the right time [31].
While, it is indicated that further studies among more accessible
factors are necessary to explore.

Specifically, we found an almost 3-fold increased risk in the
diabetes mellitus approximately. Epidemiological studies have
shown that diabetes confers an incremental risk of SCD beyond
its usual association with CAD. There was a greater risk of SCD
among people with diabetes than among those without it in a
meta-analysis primarily consisting of individuals over the age of
50 years (risk ratio, 2.02; 95% CI, 1.81–2.25) [32]. The prevalence
of SCD among those aged 1–35 and 36–49 years was associated
with approximately an eight- and a sixfold increase in diabetes,
respectively [33].

ECGs are widely available, inexpensive, non-invasive tools that
are well known to all physicians to predict SCD [34]. Of note, we
found QRS duration and spatial QRS-T angle were statistically
significant predictors. In patients with prolonged QRS duration,
tachyarrhythmias tend to be more complex, more likely to
degenerate, and to have a higher rate of sudden cardiac death
[35]. Through the facilitation of reentrant tachyarrhythmias, the
prolonged QRS with perturbed depolarization may play a direct
role in SCD. An analysis of a general population by Aro et al.
concluded that QRS duration ≥110 ms is a significant risk factor
for SCD with a 2-fold increase in risk [36]. Based on a 10-year
analysis, QRS duration was found to be a risk factor for SCD,
however, a longer follow-up period failed to provide any value in

predicting SCD risk [36]. Nevertheless, it remains uncertain
whether QRS duration is an independent marker for SCD or
merely a manifestation of more advanced cardiovascular disease.

Furthermore, the spatial and frontal QRS-T angles have been
studied for decades using vectorcardiography to determine
depolarization and repolarization, and this field of study has
reemerged recently due to an increased risk of cardiac death and
sudden cardiac death [37]. Several studies using large general
populations have found that QRS-T angle is a significant risk
factor for adverse cardiac events [37]. Our study yielded parallel
results. There was a significant difference in 10-year risk
prediction. It has been found by Henri K. Terho that QRS
duration is greater than 110 ms, QRST-angle greater than 100°,
left ventricular hypertrophy, and T-wave inversions are the most
significant independent ECG risk markers with a 3-fold risk of
developing SCD over the next 10 year [38].

On a pooled analysis, factor shortening also predicted a higher
risk of SCD. The most commonly used factor for risk
stratification of SCD is decreased left ventricular ejection
fraction (LVEF) [39]. In current practice guidelines, an LVEF
of less than 35% is a major criterion for ICD therapy [1].
However, only 20%–30% of ICD recipients in randomized
clinical trials receive appropriate ICD shocks over the course
of 4 years, which reduces the positive predictive value of LV
dysfunction as a marker [40]. Additionally, according to
population cohort studies, approximately 65% of those who
suffer SCD have either normal or mildly depressed LV
function (i.e., a reduced ejection fraction of 35%–50% [41, 42].
The severity of LV dysfunction alone does not provide a sufficient
marker for SCD, however it could be useful when combined with
other factors or as part of a multivariable risk calculation.

Analysis of the Prediction Model
SCD has been variably defined in epidemiologic studies
depending on available data, which is relevant for the
interpretation of the results, The accepted and widely used
definition of sudden cardiac death is “it occurred either within
1 h after the onset of an abrupt change in symptoms or within
24 h after onset of symptoms.” Outside of Europe and the
United States, there is little evidence to support the prediction
of SCD risk in relation to race. White participants constituted the
majority of the study population. Epidemiological studies have
shown that the risk of cardiac arrest varies with race [43]. In
studies conducted over the last 20 years, the incidence of SCD
among African Americans has consistently been twice as high as
that of white Americans, about 3.5 times higher than that of Asian
Americans, and about five times higher than that of Hispanic
Americans [44]. A higher incidence of myocardial infarction or
death was also associated with Asian race [45]. Using a
prospective, population-based cohort study, the risk of SCA
was evaluated among Hispanics and Asian Americans. The
incidence of SCA was similar between white and Hispanic
Americans when adjusted for age, but was significantly lower
in Asian Americans compared to white Americans by
approximately 32% [46]. In sum, the existing literature
suggests that further research is necessary to predict the risk
of SCD in populations other than white. SCD risk can be
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determined by differences in biological, secular, and social factors
in relation to race with further research in other regions of
the world.

There is a direct correlation between the overall sample size
and the number of participants with the outcome in prediction
model studies. In model development studies, sample size has
traditionally been determined by the number of events per
variable (EPV). EPVs of at least 10–20 have been widely
adopted as a criterion for minimizing overfitting [47, 48]. The
incidence of SCD is relatively low in the general population. It is
therefore necessary to develop and validate the model using a
larger sample size. For the development of the models, the sample
size of reviewed studies was 905–20,177, and the number of SCD
cases was 13–706, which mostly met the requirements. This is
because a larger sample size results in more precise results-that is,
smaller standard errors and narrower confidence intervals-as in
all medical research.

Currently, predictive models for SCD risk in the community
are based on Cox proportional hazards models, which are
traditional approaches. According to the C statistic for the
final model, excellent discrimination was demonstrated.
However, there is an alternative to traditional methods in the
form of machine learning-a subfield of artificial intelligence that
employs data-driven computational modeling to identify
complex patterns in data. Researchers are increasingly using
machine learning models to predict SCD risk among patients
with tetralogy of Fallot, hypertrophic cardiomyopathy, and
Brugada syndrome [49–51]. In genetic status analysis, ECG or
image analysis to predict SCD risk, it appears to suggest machine
learning may have some incremental utility in predicting SCD
over traditional models as well as being better suited to
amalgamate complex multidimensional data sources that
confer risk than traditional models alone [52].

In assessing the overall bias using PROBAST, twelve studies
were scored high risk of bias. There is a lack of detail in the
majority of the studies regarding the analysis, and only five
studies validated the model. An overfitted machine learning
model fails to succeed when presented with unseen data,
largely because its capacity exceeds the available information
in the data set. Overfitting is difficult to evaluate in the other ten
studies. As a result of this systematic review, it is evident that
models for SCD risk prediction require further research in order
to improve the quality of evidence reporting in this area [6]. The
study sorted out the indicators, which can serve to design policies
for public health services for SCD screening.

Limitations
The present study had some limitations. First, as a large list of
predictive variables was analyzed, the probability of false-positive
findings increased. Second, a conservative approach to excluding
duplicate cohorts led to the exclusion of many database studies
(e.g., Atherosclerosis Risk in Communities, ARIC). Third, the
number of studies that had been included in the meta-analysis

was low. It was not possible to assess the existence of publication
bias. Fourth, our study considered RRs equivalent to HRs in the
resent meta-analysis. Finally, some of the clinical predictors
utilized in the studies may not have been reported fully.
Hence, this may introduce bias across the studies included in
the meta-analysis.

Conclusion
This systematic review and meta-analysis show that risk
prediction model may be useful as an adjunct for risk
stratification strategies for SCD in the general population. The
most relevant studies are limited to European-American regions,
and have high bias risks. Predicting the risk of SCD is an
important and exciting area. Further studies among people
except for white participants and more accessible factors are
necessary to explore this area.
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