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Objective: This study assesses a multi-period capacitated maximal-covering location-
allocationmodel for healthcare services, taking interservice referral as well as equity access
into account.

Methods: A two-stage optimization strategy is used to formulate the model. In the first
stage, facilities are located to maximize covered demand, and in the second stage,
patients are allocated to capacitated facilities based on their radius of coverage over
multiple time periods. The problem, which belongs to the NP-hard class of optimization
problems, is solved using a linear mixed-integer programming (MILP) model.

Results: A numerical example is presented to evaluate the efficiency of the proposed
model. In addition, to identify near-optimal solutions for large instances, a hybrid genetic-
sequential quadratic programming approach (GA-SQP) is developed. To examine the
performance and efficiency of the GA-SQP, we employed several randomly generated test
instances of various sizes and compared them to those obtained using the exact method.

Conclusion: The proposed model has demonstrated an excellent ability in locating
healthcare facilities and allocating health services while taking shortage and equity into
account during each time period.

Keywords: healthcare, hierarchical facility location-allocation, health service network design, multi-period, hybrid
genetic algorithm

INTRODUCTION

Locating and allocating healthcare facilities has drawn lots of attention today. Most countries are
concerned about providing adequate services. Models of location-allocation discover and locate new
facilities in various geographic zones and then assign demand nodes to the discovered facilities.
Maláková K. evaluated that every patient has the right to get the best professional-level healthcare
services. The accessibility of healthcare is influenced by the distance to the medical facilities that are
designated in accordance with the medical specialties or the specific types of services (1). The best
location depends on the facility’s capacity, optimal distance, population density, etc. (2). The aim of
solving location-allocation problems is to find the best location or locations for one or more facilities
that will produce the highest utility value based on one or more criteria (3, 4). Location-allocation is a
complex problem for decision-makers to solve. They require a decision-making tool to locate the
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facility based on several factors in order to effectively supply
demand points (5). Several comprehensive reviews (6, 7) of
facility location-allocation problems have been developed in
the literature. Khodaparasti et al. (8) developed a multi-
objective location allocation model to enhance community-
based health programs in Iran that reflects social welfare
concerns such as equity and local accessibility. Ahmadi-Javid
et al. (9) presented a comprehensive review of healthcare facility
locations in the last decade. They classify different types of non-
emergency and emergency healthcare facility locations in terms
of location management. Narula (10) has published reviews on
the use of hierarchical location models. The proposed model
incorporates this type of modeling. One of the first research works
in the field of locating healthcare facilities was presented by Calvo
and Marks (11). They used a total local hierarchy locating model,
which since then has been tackled many times in the literature.
Dökmeci (12) presented the first continuous approach model to
locate hierarchical facilities for locating four different levels of
healthcare facilities in one area. Narula and Ogbu (13) offered
many heuristic approaches to handle a two-level hierarchical
location-allocation problem with the potential for referral
services. Malczewski and Ogryczak (14) developed a model for
a multi-objective locating problem in healthcare facilities that is
similar to the fuzzy optimization method. Marianov and Serra
(15) sought to locate hierarchical facilities with random demands
and congestion. Galvao et al. (16) proposed a total hierarchical
system for locating service facilities for women and infants that
considered only three facility levels. Mitropoulos et al. (17)
developed a method based on a bi-objective mathematical
programming model for locating hospitals and primary
healthcare centers to improve their operational shortcomings.
Şahin and Süral (18) provided a comprehensive review article and
classified hierarchical locating into three categories. Detailed
descriptions of hierarchical location-allocation problems are
presented in (18, 19). Hodgson and Jacobsen (20) pointed out
that locating total hierarchical facilities simultaneously had better
results than locating these facilities individually. Mestre, Oliveira,
and Barbosa-Póvoa (21) proposed a hierarchical model to
maximize geographical access to a healthcare network by
investigating the location and supply of center services.
Shishebori and Babadi (22) developed an integrated
mathematical model for locating and designing a network to
improve the efficiency of healthcare services. Ghadiri and
Jebelameli (23) investigated an uncapacitated facility location
and network design in a multi-period state by considering
budget constraints. To maximize perinatal treatment
approachability, Baray and Cliquet (24) developed a
hierarchical location-allocation model for maternity hospitals
in France. Mohammadi et al. (25) investigated locating
facilities and network design for a health network. Mestre
et al. (26) formulated hierarchical location-allocation models
that consider the uncertainty related to the demand and
supply of healthcare services to minimize costs. Hasanzadeh
and Bashiri (27) examined the establishment of relief centers
to reduce relief operations and establish higher-level centers to
minimize transfer time and costs. Shavarani (28) proposes a
multi-level facility location-allocation problem to concurrently

account for recharge stations, relief centers, and the number of
required drones to cover all the demand for relief in a post-
disaster period (29) investigated primary healthcare facility
allocation in Finland. They applied p-median type location-
allocation analysis to geographic information systems (GIS).
Wang (30) proposed a two-stage optimization model for
facility location-allocation problems of multiple facilities with
continuous demand along the line. Ghasemi (31) studied blood
supply chain location-allocation problems after a disaster and
proposed a model for simultaneous midterm and short-term
planning to minimize the network’s cost. Jenkins et al. (32)
developed an integer mathematical programming formulation
to determine the location and allocation of medical evacuation
assets over the phases of a military deployment.

The location of the facilities preparing for public health service
is very important and critical in ensuring that the chosen location
network serves the purpose of minimizing social cost or
equivalently maximizing the benefits to people. Cho (33)
investigated the location and capacity of healthcare facilities,
while Chu and Chu (34) determined the location of new
hospitals in relation to existing hospitals. Cardoso et al. (35)
investigated a time horizon and planned it periodically. Their
primary purpose was to promote social equity in various ways.
They expanded their model further to address social equity,
taking into account uncertainty in the amount of demand as
well as the length of service received (36). The quandary in
healthcare is how to account for equity in service distribution.
Equity may have an impact on the number of people covered and
the services provided (37). Zhang et al. (38) examine the public
healthcare location-allocation problem in Hong Kong and where
such healthcare facilities should be located to improve the equity
of accessibility, raise the total accessibility for the entire
population, reduce the population that falls outside the
coverage range, and decrease the cost of building new
facilities. Essar, M.Y., et al. (39) concluded that in the
pandemic situation, what is known as “health equity” may be
nothing more than an illusion due to the unequal provision of
health services. In this study, we consider equity in healthcare
facility locations and service assignment based on the minimum
number of higher-level healthcare centers (HLHCCs) and lower-
level healthcare centers (LLHCCs) located at each demand point.
We also consider an index that determines the difference between
the highest and lowest percentage of shortages for each service in
each period to distribute all services equally among all nodes.

The facility’s capacity influences the services it can provide.
Therefore, the facility should be well located so that its capacity
can accommodate all demands (40, 41). Cardoso et al. (35), based
on the research conducted by Mestre et al. (21), presented a
model for locating and determining service capacity in the
treatment network. Vidyarthi and Kuzgunkaya (42) studied
the location of preventive facilities concerning random
demand and congestion at centers. Zhang and his colleagues
(43) explored the possibility of locating the preventive facilities by
considering the congestion issue. Pehlivan et al. (44) presented a
model to determine the location and capacity of services for
women and infants. Zhang et al. (45) examined the impact of
patients’ preferences on the location and capacity of the centers.
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Several metaheuristic solutions exist in the location-allocation
arena. The Genetic Algorithm (GA), a materialistic search
technique that uses the analogy of natural evolution in the
search algorithm, is used in this study. It can find optimal or
near-optimal solutions while staying out of the local optimals
(46). Hosage and Goodchild (47) first identified the enormous
potential of the genetic algorithm over heuristics in solving an
uncertain class of location-allocation problems. Zhao et al. (48)
proposed a multi-objective, hierarchical mathematical model,
allied with an interleaved modified particle swarm
optimization algorithm and a genetic algorithm. Kaveh et al.
(49) explored a multiple-criteria decision-making approach for
hospital location-allocation.

In this paper, a comprehensive two-stage multi-period
maximum-covering location-allocation model for healthcare
services with consideration of inter-service referrals, shortages,
and equity is developed. According to the related literature,
single-stage location-allocation models have received the most
attention in the context of health service networks, while two-
stage location-allocation models have received less attention. This
paper studies the issue of two-stage location-allocation in
healthcare services with capacity constraints. In the first stage,
the model seeks to efficiently determine the locations of lower-
level healthcare centers (LLHCCs) and higher-level healthcare
centers (HLHCCs) and the levels of capacity of each service
provided at these locations, which are strategic (long-term)
decisions. In the second stage, allocation and inter-service
referrals are executed for each time period, which are
operational decisions. Strategic decisions are those that will
have an impact for years or even decades after the project is
completed. Once a strategic decision is made, it is unlikely to be
changed in the near future and will necessitate significant
investment. Operational decisions, which typically have a 1-
year or even 1-day impact, are those that are adjusted more
frequently in response to current external and internal
conditions. In this model, these two strategic and operational
decisions are divided into two stages, which make it easy to
change the allocation and inter-service referrals in response to
demand. Furthermore, no research in the literature has applied
various relevant aspects of a health service network configuration,
such as interservice referral, equity, capacitated constraints, and
shortage, and their work was not a multiperiod investigation.
Indeed, this study proposes a novel efficient mathematical model
and a solution method to provide an integrated model for the
two-stage capacitated location-allocation of healthcare services
for the design of healthcare networks in relation to the
aforementioned issues. Determining the capacity of a
healthcare facility is usually a critical consideration. Pehlivan
et al. (50) developed a novel hierarchical service network for
determining the location and capacity of perinatal facilities. They
defined a new hierarchical service network that excluded service
referrals between centers. As a result, the major contribution of
our study is the consideration of such inter-service referrals and
bringing all these constraints to an exact optimization approach.
It’s also worth noting that the developed model with these
constraints is classified as an NP-hard problem. Therefore,
using the exact method for large instances to find the optimal

solution cannot be obtained in a reasonable time. To solve the
model in a reasonable amount of time, we extend a hybrid GA, as
recommended in Zarrinpoor et al (51). The contributions of this
study are summarized as follows:

1. Developing mathematical models for the two-stage
capacitated healthcare location-allocation problem, which
includes two levels of facility and multi-services, as well as
multi-capacity, shortage.

2. Considering service referral to ensure that demand receives
the best possible healthcare close to home, as well as improving
resource availability and quality of care at lower levels.

3. Considering equity in healthcare facility locations and service
assignment based on the minimum number of HLHCCs and
LLHCCs located at each demand point, in addition to
distribute all services equally among all nodes, we consider
an index that determines the difference between the highest
and lowest percentage of shortages for each service in each
period.

4. Developing an effective hybrid GA-SQP approach to solve the
problem and evaluating its performance using numerical
instances.

METHODS

A network is used to represent the model under investigation.
Nodes show either candidate locations for LLHCCs or HLHCCs
and demand concentrations, or both, because population centers
are feasible locations for both health centers and patients. As seen
in Figure 1, a two-level multi-flow nested hierarchy with service
referral is considered. Our proposed model attempted to reduce
patient transfer and service costs by establishing HLHCCs and
LLHCCs based on demand points. In this case, each LLHCC
should be placed within an HLHCC’s service coverage radius, and
demand points should be within at least one LLHCC’s or
HLHCC’s coverage radius. LLHCCs are also linked to
improving demand responsiveness and equity. If the demand
points are within the coverage radius of the LLHCC or HLHCC,
the services are transferred.

A two-stage optimization technique is used to develop the
proposed model. Two levels of facilities with different service
categories and hierarchical properties are considered. The first
stage involves the location of HLHCCs and LLHCCs, and the
second stage involves allocating capacitated services over multiple
time periods. A potential set of services for outpatient services has
been considered at two levels. The first level is the HLHCC, which
offers inpatient and emergency health services in addition to
outpatient services and the second level is the LLHCC, which
provides outpatient services. In other words, patients seeking
outpatient services can go directly to the LLHCC or HLHCC
outpatient department. The difference between the services
available in the outpatient departments of the HLHCC and the
LLHCC is the expertise of the physicians, facilities, and
equipment. On the other hand, because of the importance of
the bed in the hospitalization sector, the equipped bed is regarded
as a service, and capacity is assigned to it. Given the nature of the
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inpatient ward, which refuses to accept patients when all beds are
already occupied, the percentage of rejected patients has been
considered a measure of social equity to minimize unmet
demands for providing access to services to all people. Our
model has considered the issue of a shortage of services, too.
Also, we embarked on a plan to prioritize services so that the cost
of a deficit should be regarded as higher for essential and
emergency services. In other words, the model has minimized
the shortage to achieve more social equity. In this network,
patients can refer to any of the outpatient services available at
the HLHCC or LLHCC if they are within their predetermined
coverage radius. Also, due to insufficient expertise at the LLHCC,
a percentage of patients are referred to the appropriate services at
the HLHCC. However, patients with emergencies can only apply
to the HLHCC emergency department. The patient’s
hospitalization is only possible by referral from the outpatient

and emergency departments of the HLHCC. The HLHCCs also
provide some of the more specialized services that are not
delivered by the LLHCCs. Health and treatment centers are
among the most important facilities that directly contribute to
individual and societal health. Every community needs easy,
affordable, and timely access to these facilities. Thus, this
study has considered the issue of transferring services among
LLHCCs to provide better services. In this regard, LLHCCs that
do not offer a specific service or have run out of it can receive that
service from other LLHCCs within their coverage radius to
provide better services. This procedure is important for two
reasons. On the one hand, the patient can receive all the
healthcare he or she needs from an LLHCC or HLHCC. On
the other hand, LLHCCs and HLHCCs can provide all health
services, which in turn reduces costs and meets all requirements
better.

FIGURE 1 | The schematic representation of the relevant hierarchical health service network (Iran, 2022).
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Model Formulation
In this section, we define the assumptions, sets, parameters, and
decision variables for our model, which is shown in
Supplementary Material S1, and then provide the study
mathematical formulas.

Mathematical Model
The mathematical model is presented as follows, based on the
defined assumptions and definitions:

First Stage Formulation

Min∑I
k�1

FkXkk +∑I
j�1
fjyj +∑I

k�1
∑N
n�1

∑M n( )

m�1
Gknmzknm (1)

Xjk ≤Xkk, ∀j, k (2)

∑I
k�1
k ≠ j

Xjk � yj, ∀j (3)

∑m n( )

m�1
zknm � Xkk, ∀k, n (4)

Xii + yi ≤ 1, ∀i (5)

Xjk ≤∑N
n�1

bjknXkkM, ∀j, k (6)

∑I
k�1

biknXkk ≥H, ∀i, n (7)

∑I
j�1
aijnyj ≥V, ∀i, n (8)

Second Stage Formulation

Min∑I
j�1

∑I
j′�1

∑T
t�1
Cjj′xjj′t +∑I

j�1
∑I
j�1
∑N
n�1

∑T
t�1
c′jj′n · hjj′nt +∑I

i�1
∑I
k�1

∑N
n�1

∑T
t�1
q′kinukint

+∑I
j�1
∑I
i�1
∑N
n�1

∑T
t�1
qjinejint +∑I

k�1
∑I
i�1
∑N
n�1

∑T
t�1
c″kjnwkjnt +∑I

i�1
∑N
n�1

∑T
t�1
PinBint

(9)

∑I
j′�1

∑T
t�1
xjj′t ≤yjM,∀j (10)

∑I
j�1
∑T
t�1
xjj′t ≤yj′M,∀j′ (11)

∑I
j�1
wkjnt +∑I

i�1
ukint ≤ ∑m n( )

m�1
zknmĉnm,∀k, n, t (12)

∑I
n�1

hjj′nt ≤xjj′tM, ∀j, j′, t (13)

∑N
n�1

∑T
t�1
wkjnt ≤XjkM, ∀j, k (14)

∑I
k�1

∑N
n�1

∑T
t�1
wkjnt ≤yjM, ∀j (15)

∑I
k�1

∑T
t�1
∑I
j�1
wkjnt ≤ 1 − An( )M, ∀n (16)

∑T
t�1
wkjnt ≤ bjknXkkM, ∀j, k, n (17)

∑T
t�1
ejint ≤ aijnyjM, ∀j, i, n (18)

∑T
t�1
ukint ≤ biknXkkM, ∀i, k, n (19)

∑I
k�1

wkjnt + ∑I
j′�1

hj′jnt ≥∑
I

i�1
ejint + ∑I

j′�1
hjj′nt, ∀j, n, t (20)

Bint ≥Dint −∑I
j�1
ejint −∑I

k�1
ukint, ∀i, n, t (21)

αnt � max
i

Bint

Dint
{ } −min

i

Bint

Dint
{ }, ∀n, t (22)

αnt ≤ αnmax,∀n, t (23)
yj ∈ 0, 1{ }, ∀j (24)

Xjk, Xkk ∈ 0, 1{ }, ∀j, k (25)
xjj′t ∈ 0, 1{ }, ∀j, j′ (26)

zknm ∈ 0, 1{ }, ∀k, n, m (27)
wkjnt, hjj′nt, ukint, Bint, Dint, ejint, αnt, βnt, δnt, αn

max ≥ 0,
∀k, i, j, j′, n, t (28)

J, K, I, V,H,N, T≥ 0 (29)
Supplementary Material S2 contains descriptions of the first

and second stages of mathematical modeling.

Model Linearization
The presented mathematical model is non-linear because of
constraint 22 in the second stage. Therefore, the new variables
of βnt and γnt are substituted with max

i

Bint
Dint
{ } and min

i

Bint
Dint
{ },

respectively, to linearize this constraint as follows:

αnt � βnt − γnt, ∀n, t (30)

βnt � ∑I
i�1
β′int

Bint

Dint
( ),∀n, t (31)

∑I
i�1
β′int � 1, ∀n, t (32)

βnt ≥
Bint

Dint
, ∀i, n, t (33)

γnt � ∑I
i�1
γ′int

Bint

Dint
( ),∀n, t (34)
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∑I
i�1
γ′int � 1, ∀n, t (35)

γnt ≤
Bint

Dint
, ∀i, n, t (36)

β′int, γ
′
int ∈ 0, 1{ }, ∀i, n, t (37)

Due to the above linearization, variables βnt and γnt are written
as a multiplication of two variables, which causes the model to
become non-linear again. Thus, a new variable is presented as β″int
instead of the multiplication of two binary and continuous
variables, β′int and Bint. On the other hand, a variable is
considered as γ″int for multiplying two variables, γ′int and Bint to
make the constraints in linear form. By introducing the new
variables, constraint (Eq. 22) should be replaced by (Eq. 38), and
the following additional constraints should be added to the
proposed model:

αnt � βnt − γnt, ∀n, t (38)

βnt � ∑I
i�1

β″int
Dint

, ∀n, t (39)

β″int ≥Bint − 1 − β′int( )M,∀i, n, t (40)
β″int ≤Bint + 1 − β′int( )M,∀i, n, t (41)

β″int ≤ β
′
intM,∀i, n, t (42)

∑I
i�1
β′int � 1, ∀n, t (43)

βnt ≥
Bint

Dint
, ∀i, n, t (44)

γnt � ∑I
i�1

γ″int
Dint

, ∀n, t (45)

γ″int ≥Bint + 1 − γ′int( )M,∀i, n, t (46)
γ″int ≤Bint − 1 − γ′int( )M,∀i, n, t (47)

γ″int ≤ γint
′ M,∀i, n, t (48)

∑I
i�1
γ′int � 1, ∀n, t (49)

γnt ≤
Bint

Dint
, ∀i, n, t (50)

β′int, γ
′
int ∈ 0, 1{ }, ∀i, n, t (51)

RESULTS

A simple numerical example is used to demonstrate the
applicability of the proposed model, as illustrated in
Supplementary Material S3.

Solution Methodology
The location allocation problem is an NP-hard problem that can
theoretically be solved using the branch and bound (linear
programming) method. However, branch and bound is

impractical due to the non-linearity and large scale of these
problems. These factors have favored heuristic and
metaheuristic solutions to the problem of location allocation
(52). Exact methods for large instances are computationally
expensive. Conventional methods are unable to solve the
optimization problem within a reasonable time. As a result,
several researchers used a variety of meta-heuristic algorithms to
achieve near-optimal solutions. This type of algorithm is typically
used to solve problems for which no suitable problem-specific
algorithm or heuristic exists (53). A two-stage hybrid algorithm
known as GA-SQP is used in the proposed model, which combines
a genetic algorithm (GA) with sequential quadratic programming
(SQP). GA is the main optimizer, while SQP significantly increases
the power of the GA in terms of solution quality and speed of
convergence to the optimal solution in the second stage. GA is a
probabilistic, bio-inspired search method based on the natural
selection approach (46). Gen et al. (54) demonstrated that GA
would be the best approach for obtaining near global solutions. The
following sections explain howwe apply theGA-based algorithm to
each stage of the proposed model. Figure 2 depicts the proposed
GA-SQP algorithm’s flow chart.

First Stage Initialization
In the first stage, GA searches for the near global optimum in the
whole solution region to find the optimal locations of HLHCCs and
LLHCCs. Furthermore, the capacity level of each service provided by
LLHCCs and the connection of LLHCCs to HLHCCs are also
determined. The first stage of the solution representation’s coding
procedure involves encoding and decoding, which is shown in
Supplementary Material S4. The decoding process is
schematically illustrated in Figure 3, which includes valuing
policies for dependent variables as well as the penalty function
(pnf) mechanism for constraint handling.

Selection Operator
The selection process discovers chromosomes with higher fitness
functions, which might generate better offspring to form the next
generation. In this study, the selection process is based on the
roulette wheel method (55) because of its efficiency and ease of
implementation (56).

Crossover Operator
The crossover operator is vital in generating new generations.
This operator locally searches for better offspring. Percentage
chance of crossover (Pc) is a predetermined parameter based on
problem size. The chromosome structure influences the choice of
crossover operator. This study used a continuous type of uniform
crossover (54). To ascertain this operator, a Mask matrix of the
same size as one of the selected parent chromosomes is defined.
This matrix’s entries are uniform numbers between 0 and 1 that
are randomly generated. A convex combination of the
corresponding gene in the created matrix and the associated
genes in two selected parents should be used to calculate each
gene (57). In other words, the genes of the two children with the
same matrix size as one of their parents are generated using
Parent1 × Mask + Parent2 × (1 −Mask) and Parent1 × (1
−Mask) + Parent2 × Mask.
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Mutation Operator
After the crossover, a mutation occurs. This operator enhances a
percentage of the genes on specific chromosomes and prevents
algorithms from getting trapped in the locality. This study used a
randomuniformmutation, which is based on aGaussian distribution.
This operator generates a matrix of random numbers that are
uniformly distributed between zero and one for each chromosome
segment. Genes with mutation rates below a certain threshold are
candidates for mutation operations, which alter the gene’s value.

Second Stage Initialization
HLHCCs and LLHCCs have been located in the first stage. In
the second stage, the allocation of services and service transfers
while considering the shortage are examined. Further, the
achievement of equity access is ensured. When it comes to
tackling non-linearly constrained optimization problems, SQP
has undoubtedly proven to be the most successful method
available. SQP is not a single algorithm, as is the case with most

optimization approaches, but rather a conceptual method
from which a large number of individual algorithms have
been developed (58). The proposed GA-SQP hybrid method
eliminates the need to provide a suitable starting point and
allows for the assurance of a faster convergence speed and
higher convergence accuracy to discover the optimal solution.
First, SQP searches for the optimum in the whole solution
region to provide a suitable starting point. Then the near-
global optimal solution can be obtained by GA. The
mathematical model developed in this study is presented as
a two-stage optimization that separates strategic and
operational decisions, the global optimal solution for the
presented two-stage problem cannot be obtained, but the
global optimal solution for each of the stages can be
obtained. This is because a mixed-integer linear model is
present at each stage. The encoding and decoding of the
second stage are attached in Supplementary Material S4.
Figure 4 schematically depicts the decoding process.

FIGURE 2 | Two-stage Genetic-Sequential quadratic programming flowchart (Iran, 2022).
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FIGURE 3 | First stage decoding process flowchart (Iran, 2022).

FIGURE 4 | Second-stage decoding process flowchart (Iran, 2022).
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Selection Operator
The selection process in the second stage, like the first, is based on the
roulette wheel method. Also, the continuous type of uniform
crossover and mutation that was discussed in the first stage is used.

Elitism Process
The chromosomes that do not undergo crossover or mutation are
given the elitism process. Elitism is being used to ensure that the
quality of the solutions generated by the GA will not deteriorate
with each new generation.

Stopping Criterion
After a predefined number of generations, the GA-SQP solution
scheme is terminated. The size of the problem determines the
rational number.

Parameters Tuning
The values of any meta-heuristic algorithm’s parameters determine
its effectiveness and quality. Different parameter combinations in an
algorithm can produce solutions of varying quality. In this study, the
Taguchi approach is used to tune the algorithmic parameters.
Taguchi is an efficient method that was created as an alternative
to full fractional experimental design (59). The tuning of the
parameters is described in Supplementary Material S5.

DISCUSSION

This section analyzes the efficiency of the proposed algorithms through
sensitivity analysis. In the proposedmodel, V andHare vital factors that
influence the fitness value. These factors illustrate the minimum
number of LLHCCs and HLHCCs that must be covered by all
nodes for any kind of service, respectively. All the factors mentioned
above satisfy themeasure of equity. If the planners have easing finances,
they would like to select a solution with higher equity, accessibility, and
coverage, even if this solution costsmore. In verse, in straining finances,
the choice will be completely different. Therefore, planners or the
government can select disparate solutions within a different situation.
The sensitivity analysis is fully described inSupplementaryMaterial S6.

Conclusion and Future Research
The main purpose of paying close attention to the location-allocation
of healthcare facilities is to enhance community health by providing
access to and delivery of high-quality services that meet people’s
health needs. This paper studies the issue of two-stage location-
allocation in healthcare services with capacity constraints. The model
aims to efficiently determine the locations of LLHCCs and HLHCCs,
as well as the levels of capacity of each service provided at these
locations, in the first stage. Allocations and inter-service referrals are
executed for each time period in the second stage. We separated
strategic decisions from operational decisions by using a two-stage
model. Strategic decisions aremade in the first stage, and these are the
decisions we make when we are finding or updating the locations of
HLHCCs and LLHCCs, as well as when we are establishing these
centers. These are long-term and expensive management strategies.
Operational decisions, on the other hand, occur in the second stage,
which involves medium-term decisions that allow for easy changes in

allocation and inter-service referrals in response to demand. Since the
shortage is allowed in the model, social equity is implemented in this
network to balance the various shortfalls in all treatment centers. The
proposed MILP model is a non-linear one that is converted into a
linear one, and finally, the upper and lower boundaries for the
problem are calculated using the branch and bound approach.
Due to the complexity of our proposed model, for large problems,
the exact approach might not be able to find the optimal solution in a
reasonable time. Therefore, the two-stage hybrid GA-SQP algorithm
is proposed to achieve optimal solutions effectively and efficiently. The
applicability and efficiency of our proposed solution scheme are
demonstrated by a comparison of the established algorithm with
the exact solutions (B&B) in small and medium-sized test instances.
Furthermore, a sensitivity analysis was performed on the impact of the
minimumnumber of LLHCCs andHLHCCs thatmust be covered by
all nodes on the objective functions. Although the proposed hybrid
GA-SQP algorithm has demonstrated an excellent ability to solve the
problem in a reasonable amount of time, there is still much
opportunity to develop other hybrid strategies to solve the same
problem in order to evaluate the strengths of various approaches in
solving a problem of this type (60–62). Furthermore, the proposed
hybrid algorithm provides a variety of options and parameter settings
that are worth fully examining.

Future research could improve by considering non-spatial
aspects to determine facility locations. For instance, people in
a poor socioeconomic area may be unable to cover their
healthcare costs even though a new hospital has been allocated
to the neighborhood. Thus, the model could be expanded by
altering the objective function and adding constraint sets to
discover more socio-economic aspects in the formulation.
Another valuable avenue for future research is to consider
disaster scenarios that can be applied to the proposed model.
This will be a valuable addition to our research’s ability to model
real-world problems. Another aspect of future work could
concentrate on the conditions of uncertainty that can be
modeled as fuzzy sets. For example, demands that are
deterministic in this paper can be conducted under the
conditions of demand uncertainty.
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