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Objectives: In this study, we applied the random forest (RF) algorithm to birth-cohort data
to train a model to predict low cognitive ability at 5 years of age and to identify the important
predictive features.

Methods: Data was from 1,070 participants in the Irish population-based BASELINE
cohort. A RF model was trained to predict an intelligence quotient (IQ) score ≤90 at age
5 years using maternal, infant, and sociodemographic features. Feature importance was
examined and internal validation performed using 10-fold cross validation repeated
5 times. Results The five most important predictive features were the total years of
maternal schooling, infant Apgar score at 1 min, socioeconomic index, maternal BMI, and
alcohol consumption in the first trimester. On internal validation a parsimonious RF model
based on 11 features showed excellent predictive ability, correctly classifying 95% of
participants. This provides a foundation suitable for external validation in an unseen cohort.

Conclusion: Machine learning approaches to large existing datasets can provide
accurate feature selection to improve risk prediction. Further validation of this model is
required in cohorts representative of the general population.
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INTRODUCTION

Cognitive function is a broad construct consisting of multiple domains including learning,
understanding, reasoning, problem solving, memory, language, attention, and decision making
[1]. Early life is a crucial period for shaping the developing brain, and represents a window of both
vulnerability and opportunity [2]. A failure to achieve early foundational cognitive skills may result
in a permanent loss of opportunity to achieve full cognitive potential. This has significant adverse
implications for outcomes throughout the life course including educational attainment [3], mental
health [4], social mobility [5], financial well-being [6], and physical health [7].

Unlike children with more severe neurodevelopmental disorders whomay be identified in infancy
through routine developmental screening programmes, children with low cognitive ability may not
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display such overt deficits in early infancy [8]. Risk prediction
models for poor cognitive outcomes in childhood have been
widely studied among certain high risk populations such as pre-
term and low birthweight infants [9]. However, far less has been
published on their potential use among a general paediatric
population.

Adverse cognitive outcomes in childhood are complex,
heterogenous, and result from highly interactive relationships
between biological, environmental, and social factors. The
causative mechanisms are often poorly understood. This real-
world complexity may be difficult to model with traditional
statistical methods that rely on strong assumptions, which are
often unrealistic in complex real world data [10]. Traditional
regression methods can handle only a small number of predictors
and require interaction terms to be specified a priori by the
investigator, a process not commonly performed despite a wealth
of evidence demonstrating the importance and strength of
interactions between many of the relevant predictors, for
example between prematurity and maternal education [11–13].

In contrast, machine learning (ML) aims to make a repeatable
prediction by learning from patterns within the data, without
prior assumptions or rules governing the process [14]. ML
methods have the ability to handle many potential variables

and to statistically model highly complex, non-linear,
interactive relationships, without the need for prior manual
specification of the interactions. With recent advances in both
the quantity and quality of population based data available
through large birth cohorts and electronic health records, the
application of artificial intelligence and machine learning may
assist in finding the optimal predictive patterns to enable early
interventions [15]. To date, the application of ML for predicting
childhood cognitive outcomes at a population level has not been
explored.

Decision trees and random forests are one type of supervised
ML algorithm. A decision tree resembles a flow chart whereby
data is successively divided according to decisions based on the
predictor variables (features) [16]. A random forest (RF) consists
of multiple decision trees whose results are aggregated into a
single result [16, 17]. One advantage of the RF is the relative
“interpretability” when compared with other ML methods [18].
This means that it is possible to determine the relative importance
of the features contained within the model and to explicitly
interpret and describe important interactions. For many
clinical applications the interpretability of the model for both
clinicians and the public is important for successful
implementation.

FIGURE 1 | Flowchart describing BASELINE cohort and study population (Cork, Ireland. 2022). Legend: The flowchart details participation and attrition at each
phase of the BASELINE birth cohort and describes how the study population for this study was arrived at.
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In this study we focus on the early identification of infants at
risk of poor cognitive outcomes at 5 years of age in a general
paediatric population. Acknowledging that interventions are
more successful when implemented at the earliest possible
stage, we focus on features which do not require invasive
testing, and are readily available in the perinatal period at a
population level. The objectives of this study are to determine the
most important of these features for predicting low cognitive
ability at age 5; to examine the important interactions between
these features; to train a RF classification model using these
features; and to examine the accuracy of this model within our
cohort.

METHODS

Study Population
The study population was mothers and infants from the Irish
Cork BASELINE Study, the first longitudinal birth cohort in
Ireland [19]. The BASELINE birth cohort was established to
examine the effect of the in-utero and early life environment
on health and neurodevelopmental outcomes in children [19].
Recruitment for BASELINE occurred through two streams.
Stream 1 recruitment (n = 1,583) was from the Screening for
Pregnancy Endpoints (SCOPE) pregnancy cohort, a multi-
centre prospective study of low-risk, primiparous women
which began in Cork in 2008, with the aim of examining
adverse outcomes in pregnancy. All women who participated
in the SCOPE study were invited to participate in the
BASELINE birth cohort. Stream 2 recruitment (n = 600)
began in 2010 in the postnatal wards of Cork University
Maternity Hospital. Women who had a singleton pregnancy
were invited to participate in BASELINE. Postnatal
assessments were completed at day 2, and then at 2, 6, 12,
24 and 60 months. Infants with complete cognitive outcome
data at age 5 years were eligible for inclusion in this study. A
flowchart describing the BASELINE cohort and the
participants included in this study is contained in Figure 1.

Data Preprocessing
To create the training dataset, the data were preprocessed and
transformed to a suitable format for model training. The
main issues with the dataset were the imbalance and missing
values.

The dataset was highly imbalanced with regard to the outcome
of interest, meaning that the outcome classes of interest were not
equally represented—specifically only a minority of the
population fell into the outcome group of primary interest
(low cognitive ability defined as an IQ ≤ 90). Learning from
class-imbalanced data tends to produce a model bias in favour of
the majority class (average/above cognitive ability), with poor
predictive performance for the minority class (low cognitive
ability) [20]. There are many different techniques to address
the issue of class imbalance including over-sampling the minority
class, under-sampling the majority class, boosting, bagging, and
repeated random sub-sampling. Synthetic Minority
Oversampling Technique (SMOTE) was used in this study,

and involves a combination of over-sampling the minority
class and under-sampling the majority class [21]. Unlike other
oversampling techniques which simply duplicate minority class
cases, SMOTE utilises an over-sampling approach where the
minority class is over-sampled by creating synthetic examples
[21]. This is achieved by taking each minority class sample and
introducing random synthetic examples along the line segments
that join it to a randomly selected sample from its k nearest
minority class neighbours. This random convex combination of
feature vectors is repeated until the desired amount of over-
sampling, set by the user, is achieved [20, 21]. Under-sampling is
achieved by randomly removing samples from the majority class.
Through this combination the learning bias toward the majority
class can be compensated for [20, 21]. The use of SMOTE is not
without disadvantages—under-sampling may disregard
potentially useful data points from the majority class in its
attempt to rebalance the classes; the random selection of
synthetic minority class data points used in over-sampling
may produce distribution marginalisation [22].

Due to the different times of recruitment (antenatal
recruitment vs. post-delivery recruitment), there were
participants with missing data on features of interest measured
in the antenatal period. As these data absences could not be
determined to be at random, complete case analysis was
performed. Imputation was also performed for missing
predictor data using the standard random forest imputation
method (missForest package) and analysis of imputed data is
contained in online only material [23].

Data Analysis
Outcome
The outcome of interest in this study was cognitive ability at
5 years of age. This was measured using the Kaufman Brief
Intelligence Test Second Edition (KBIT-2), which was
administered by trained research nurses at the 60-month
follow up. It comprises three subtests: verbal knowledge
and riddles, which measure verbal intelligence, and
matrices, which measure non-verbal intelligence. The
verbal knowledge subtest requires the child to point to a
picture, from a selection of six, that best represents a
vocabulary word spoken by the examiner. For the riddles
subtest the child is asked to point to a picture or provide a
word that solves a riddle spoken by the examiner. Together,
these two subtests primarily measure crystalised verbal ability
which comes from prior learning and experience [24]. The
matrices subtest, which requires the child to choose a picture
which follows a pattern or concept in pictures shown by the
examiner, measures fluid reasoning and visual processing and
is not dependent on knowledge of vocabulary or
language [24].

The verbal and non-verbal scores are combined to provide a
composite intelligent quotient (IQ). The Kaufmann test has been
shown to be a reliable and valid measure of IQ in children and
adults aged 4–90 years [24]. Composite IQ scores ≤90 were
categorised “low cognitive ability” and scores above this as
“average and above.” A cut-off of 90 corresponds to a cut-off
of 1.5 standard deviations below the cohort mean IQ.
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TABLE 1 | Characteristics of those with low cognitive ability and those with average/above cognitive ability at 5 years of age (Cork, Ireland. 2022).

Valid Low cognitive
abilitya (n = 66)

Average/above cognitive
abilitya

(n = 1,004)

p-value Unadjusted odds
of low

cognitive ability
OR (95%CI)

Sociodemographic
Gender
Female 1,070 23 (34.8) 504 (50.2) 0.022b Ref
Male 43 (65.2) 500 (49.8) 0.022 1.88 (1.13–3.22)
Maternal Relationship Status 1,070
In a relationship 60 (90.9) 973 (96.9) Ref
Not in a relationship 6 (9.1) 31 (3.1) 0.025b 3.14 (1.15–7.32)
Maternal migration hx 1,059
Lived in country >2 generations 55 (84.6) 870 (87.5) Ref
Mother immigrated 7 (10.8) 94 (9.5) 1.18 (0.48–2.50)
One or both parents immigrated 3 (4.6) 30 (3.0) 0.534c 1.58 (0.37–4.62)
Ethnicity
European 1,070 65 (98.4) 993 (98.9) Ref
Other 1 (1.6) 11 (1.1) 0.536c 0.08–7.31
Total years of schooling 1,070 13.2 (0.8) 13.4 (0.8) 0.109d 0.75 (0.56–1.03)
Maternal Employment Status 1,067
Full time 49 (75.4) 822 (82.0) Ref
Part time 9 (13.8) 89 (8.9) 1.70 (0.76–3.41)
Student 1 (1.5) 15 (1.5) 1.12 (0.06–5.69)
Homemaker 0 (0.0) 37 (3.7) 0.00 (0.00–3.15)
Unemployed/sickness benefit 6 (9.2) 39 (3.9) 0.061c 2.58 (0.95–5.98)
Socioeconomic index—mean (sd) 1,070 37.3 (15.1) 44.5 (15.5) <0.001d 0.97 (0.95–0.98)
Accommodation type 1,070
Own house/flat 46 (69.7) 797 (79.4) Ref
Private rental 14 (21.2) 172 (17.1) 1.41 (0.73–2.56)
Government/council rental 4 (6.1) 13 (1.3) 5.33 (1.46–15.76)
Other 2 (3.0) 22 (2.2) 0.026a 1.58 (0.25–5.57)
Family Income 1,042
<21 k 8 (12.7) 45 (4.6) Ref
21–42 k 14 (22.2) 164 (16.7) 0.48 (0.19–1.27)
43–63 k 16 (25.4) 217 (22.1) 0.41 (0.17–1.08)
64–84 k 16 (25.4) 249 (25.4) 0.36 (0.15–0.94)
85–105 5 (7.9) 158 (16.1) 0.18 (0.05–0.56)
106–140 k 4 (6.3) 122 (12.4) 0.18 (0.05–0.62)
>140 k 0 (0.0) 25 (2.6) 0.042c 0.0 (0.0–0.0)
Maternal age (years)—mean (sd) 806 29.7 (4.3) 30.7 (3.9) 0.123d 0.93 (0.86–1.01)

Behavioural/Lifestyle
Maternal BMI 806 26.1 (4.6) 24.9 (4.0) 0.115d 1.07 (0.99–1.14)
Depression scoref– median (IQR) 795 6.0 (7.5) 5.0 (7.0) 0.743e 1.02 (0.95–1.09)
Units of alcohol/week 1st trimester—median (IQR) 806 4.0 (8.4) 2.9 (5.1) 0.127e 1.07 (1.02–1.11)
Cigarettes/day in 1st trimester—median (IQR) 0 (5.0) 0 (0.0) 0.042e 1.08 (1.02–1.13)

Birth/Delivery
Apgar score at 1 min—median (IQR) 1,061 9.0 (0.0) 9.0 (0.0) 0.773e 0.94 (0.79–1.14)
Apgar score at 5 min—median (IQR) 1,061 10.0 (1.0) 10 (1.0) 0.877e 1.08 (0.78–1.61)
Birth head circumference (cm)—mean (sd) 1,055 35.1 (1.4) 34.9 (1.5) 0.287d 1.09 (0.92–1.30)
Admission to NICU 1,070
Not Admitted 62 (93.9) 917 (913) Ref
Admitted 4 (6.1) 87 (8.7) 0.648b 0.68 (0.20–1.70)
Infant gestational age 1,070 39.5 (1.75) 40.0 (2.0) 0.155e 0.90 (0.78–1.05)
Infant birthweight (g)—mean (sd) 3,546.2 (1.6) 3,526.8 (1.5) 0.183d 1.00 (0.99–1.00)
Infant feeding on discharge 1,061
Predominantly breastfed 21 (31.8) 460 (46.2) Ref
Partially breastfed 19 (28.8) 289 (29.0) 1.44 (0.76–2.73)
Formula fed 26 (39.4) 246 (24.7) 0.018b 2.32 (1.28–4.24)
High Risk Birth 833 1 (2.2) 67 (8.5) 0.167 0.24 (0.01–1.15)

Cognitive
IQ—mean (sd) 1,070 87.0 (3.4) 105.5 (7.8) <0.001

OR, odds ratio; CI, confidence interval.
aData described as n (%) except where otherwise indicated.
bp-value calculated using Pearson’s Chi-square test.
cp-value calculated using Fishers’ Exact test.
dp-value calculated using Welch Two Sample t-test.
ep-value calculated using Wilcoxon rank sum test.
fMeasured at 15 weeks gestation using Edinburgh Depression Scale.
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Features
A machine learning algorithm was trained to learn how to make
this classification between low and average/above cognitive ability
using the predictive features available in the dataset. The only
inclusion criterion for predictive features was that the feature was
easily measurable at a population level in the perinatal period. In
total, there were 21 predictive features included in the study
dataset. These were categorised into sociodemographic, lifestyle/
behavioural, and birth/delivery and a description of measurement
is provided (Supplementary Table S1). A correlation matrix
(Supplementary Figure S1) was used to examine the correlation
between features of interest and assess redundancy. All
correlation coefficients were ≤0.70 and no features were
deemed redundant.

The machine learning algorithm used for this classification
problem was the Random Forest algorithm (using the “caret” and
“randomForest” packages in R) [25, 26]. RF is an ensemble ML
algorithm that is widely used in classification problems. A RF
consists of multiple decision trees, each of which consists of a root
node, split node(s), and terminal node(s). At each node a splitting
step occurs whereby a decision is taken on how to partition the
data for the nodes below, with each partition of data representing
a branch in the tree [27]. At each node of the tree, a random
subset of a defined number of features (mtry) is selected and only
these variables are considered for partitioning the data at that
node [11]. Splitting at nodes will continue down each branch
until a stopping rule is satisfied, with this node being referred to as
the leaf or terminal node [27]. To classify a participant, each tree
will determine which terminal node that participant belongs to,
culminating in a vote for that particular class. The forest predicts
the class that gets the majority vote across all decision trees in the
forest [26]. The RF algorithm allows for tuning of
hyperparameters which control the learning process in the RF
and these are discussed in Supplementary Text.

Feature importance, a measure of the degree of association
between the feature and the classification result, was assessed
using the Gini importance and the permutation accuracy
importance. Gini impurity is a measure of how often an
observation is incorrectly labelled if that labelling was
performed at random [28]. A lower Gini impurity indicates a
lower probability of misclassification. The Gini importance for a
given node is the mean decrease in node impurity, weighted by

the proportion of observations reaching that node in each
decision tree in the forest [28]. A split which results in a large
decrease of Gini impurity is important and the feature used for
splitting will therefore have a high mean decrease in node
impurity and a high Gini importance.

Bootstrap sampling of the training set for each tree means that
each tree in the forest has its own “out of bag” (OOB) data which
was not used in the construction of that particular tree [17]. The
prediction accuracy is first measured on the OOB data. The values
of the feature of interest are randomly shuffled and prediction
accuracy is calculated again. The mean difference between the
OOB errors before and after the random permutation of the
feature is calculated. If a feature is important it would be expected
that randomly changing its value would result in a stronger
decrease in accuracy than the permutation of an unimportant
variable [11, 29]. An alternative measure is the minimal depth of
the feature which is described in Supplementary Material. The
relationship between each feature and the outcome was examined
using partial dependence plots, which provide a graphical
representation of the marginal effect of a feature on the class
probability.

The method used to evaluate the RF was repeated k-fold cross-
validation. Performing k-fold cross validation involves first specifying
a value for k, and in this study we chose to set it to k = 10, a value
commonly used and supported by previous literature [30]. The
dataset is shuffled randomly and split into 10 mutually exclusive
folds. Each fold will function as a test set one time and will be used as
part of the training set k-1 (or 9) times. This procedure is repeated a
specified number of times, in this study 5 times, and the mean result
across all folds and all repeats is reported [31]. A 10-fold cross
validation repeated 5 times means that the accuracy estimates are
performed across 50 different held-out test sets. Themeasures used in
the evaluation were overall accuracy (proportion of correct
predictions), sensitivity (proportion of those with low cognitive
ability correctly identified), and specificity (proportion of those
without low cognitive ability correctly identified), Recursive feature
elimination (RFE) with 10-fold cross validation repeated 5 times was
then used to train a parsimonious RF model (Model B) [32]. The
performancewas compared to the original RFmodel (Model A). Two
logistic regressionmodels, one containing all 21 predictors (Model C)
and the other containing the 11 most important features (Model D)
were also evaluated.

TABLE 2 | Results of evaluation of models A-D (Cork, Ireland. 2022).

Method Features Mtry Accuracy Sensitivity Specificity

Model A Random forest 21 4 0.95 0.89 0.99
Model B Random forest 11 5 0.95 0.89 0.98
Model C Logistic regression 21 NA 0.78 0.64 0.86
Model D Logistic regression 11 NA 0.77 0.48 0.83

Model A: Random forestmodel using 21 features (total years schooling, Apgar score 1 min, socioeconomic index, Apgar score 5 min, family income, gestational age, units of alcohol in first
trimester, head circumference at birth, maternal age, maternal depression score, accommodation type, infant gender, maternal relationship status,migration history, maternal employment
status, admission to NICU, accommodation type, infant feeding on discharge, high risk birth).
Model B: Parsimonious random forest model using 11 features (total years schooling, Apgar score 1 min, socioeconomic index, maternal BMI, Apgar score 5 min, family income,
gestational age, units of alcohol in first trimester, head circumference at birth, maternal age, maternal depression score).
Model C: Logistic regression model using 21 features.
Model D: Logistic regression model using 11 features.
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Ethical Approval
The Clinical Research Ethics Committee of Cork Teaching
Hospitals provided ethical approval for the BASELINE study
(ref ECM5(9) 01/07/2008). It is registered at the United States
National Institutes of Health Clinical Trials Registry (http://www.
clinicaltrials.gov), ID: NCT01498965, and was carried out in line
with the Declaration of Helsinki. The STROBE guidelines were
followed in the conduct and reporting of this study [33].

RESULTS

Demographics
There were 1,070 children who completed the KBIT-2 at a mean
age of 60.8 months (standard deviation (SD) 1.7 months), and
who were eligible for inclusion in this study. Composite IQ values
ranged from 76–143, and a histogram is contained in
Supplementary Figure S2. The characteristics of those who
did and did not complete the KBIT-2 at 60 months are
compared in Supplementary Table S2. There were
66 participants in the low cognitive ability group which had a
mean IQ of 87.0, and 1,004 participants in the average/above
group which had a mean IQ of 105.5.

The characteristics of participants according to cognitive
ability group are described in Table 1. The association
between each feature and the outcome is described using
unadjusted odds ratios. Male participants had a mean IQ of
103.3, compared with females who had a mean IQ of 105.5. In
the low cognitive ability group there was a significantly
higher proportion of males compared with females (males
65.2% v females 34.8%, p = 0.022). For males, the odds of
experiencing low cognitive ability at age 5 were 1.9 times
higher compared with females (unadjusted odds ratio 1.88,
95% confidence interval 1.13–3.22). Other features which
were associated with a significant increase in the odds of a
child experiencing low cognitive ability were lower
socioeconomic index, being in a lower income category,
being from a single parent family, being formula fed,
smoking in the first trimester of pregnancy, and living in
government housing.

Machine Learning
After applying complete case analysis there were 36 participants
(5.0%) in the low cognitive ability group and 683 (95.0%) in the
average/above group. SMOTE was applied with 600% over-
sampling to the minority class and 200% under-sampling to
the majority class. The rebalanced dataset contained
252 participants (36.8%) and 432 (63.2%) in the low and
average/above groups, respectively.

The results of the final RF model containing 21 features
(Model A) are presented in Table 2, alongside the
parsimonious model containing 11 features (Model B) and
logistic regression models (Models C and D). Of note, the
11 features identified on RFE for the parsimonious model
were contained within the 13 most important features
consistently identified using the random forest importance
measures. The accuracy of Model B was 0.95 and did not
improve by more than 0.01 following inclusion of further
features beyond these 11. The parsimonious Model B
achieved a sensitivity of 0.89 and a specificity of 0.98 on
10-fold cross validation To illustrate how a RF is constructed,
an example decision tree from the Model A is shown in
Figure 2.

There were 13 features identified consistently across
measures of feature importance (Figure 3 and
Supplementary Figure S3). These were total years maternal
schooling, socioeconomic index, family income, maternal age,
maternal relationship status, maternal BMI, weekly units of
alcohol in first trimester, maternal depression score, Apgar
score at 1 min, Apgar score at 5 min, infant birthweight, infant
gestational age, and infant head circumference. The
correlations between importance rankings for the
21 features are described in Supplementary Figure S4. The
relationship between each of these features and the probability
of low cognitive ability can be visualised in the partial
dependence plots in Supplementary Figure S5.

Using these variables a dataframe of the most important
interactions in the model, determined by occurrence was
generated. Table 3 outlines the six interaction terms which
occurred most frequently in Model A. The mean minimal

FIGURE 2 | Example decision tree from the random forest model
predicting low cognitive ability at age 5 (Cork, Ireland. 2022). Legend: X1 refers
to the “average/above cognitive ability” group and X2 refers to the “low
cognitive ability” group. At the top of decision tree, the overall probability
of “average/above” cognitive ability is shown. 63% of participants had
average/above cognitive ability (after SMOTE applied). The root node asks
whether the total years of maternal schooling was <14. If no, then you proceed
down the right branch. 31% had ≥14 years of schooling and the probability of
average/above cognitive ability was 94%. If yes, then proceed down left
branch. 69% had <14 years and a probability of average/above cognitive
ability of 49%. The next splitting node asks whether the Apgar score at 1 min
was <9. If yes, then proceed down left branch to the leaf or terminal node. 32%
had an Apgar score <9 at 1 min and a probability of average/above cognitive
ability of 27%. If no, then proceed down the right branch where the next
splitting node asks whether the socioeconomic index was less than 42.
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depth refers to the mean minimal depth of the interacting feature
conditional on the main feature being the root node. The
unconditional mean minimal depth is the mean minimal
depth of the feature without stipulating this root. An
interaction term with a lower mean minimal depth indicates

the interaction is a more important feature than either feature
alone [34]. For example, the interaction between total years of
maternal schooling and weekly units of alcohol in the first
trimester was a more important predictive feature than weekly
units of alcohol or total years of maternal schooling alone.

FIGURE 3 | Feature importance plot showing the mean decrease in Gini and mean decrease in accuracy for the 15 most important features (Cork, Ireland. 2022).
Legend: The top plot in the figure shows the mean decrease in Gini for 15 features ranked in descending order of importance. A feature which results in a larger decrease
in Gini impurity is a more important feature. The bottom plot in the figure shows themean decrease in accuracy for 15 features ranked in descending order of importance.
A feature with a larger mean decrease in accuracy is a more important feature.

TABLE 3 | Six most frequently occurring interactions in random forest model model A (Cork, Ireland. 2022).

Main feature Interacting feature Occurrences Unconditional minimal depth
of interacting feature

Mean minimal depth
of interacting feature
conditional on main

feature

Total Years Schooling Weekly units alcohol first trimester 334 3.21 2.0
Total Years Schooling Maternal BMI 333 2.71 2.14
Total Years Schooling Infant Birthweight 329 3.73 2.43
Total Years Schooling Maternal Depression Score 325 3.78 2.73
Apgar Score 1 Minute Weekly units alcohol in first trimester 324 3.21 2.18
Total Years Schooling Infant head circumference 321 3.68 2.72
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DISCUSSION

In this study we identified themost important features for predicting
low cognitive ability at age 5 from a range of features which could be
easily measured in the perinatal period at a population level. There
were 13 features consistently identified across the range of
importance measures used - total years maternal schooling,
socioeconomic index, family income, maternal age, maternal
relationship status, maternal BMI, weekly units of alcohol in first
trimester, maternal depression score, Apgar score at 1 min, Apgar
score at 5 min, infant birthweight, infant gestational age, and infant
head circumference.

No previous studies using ML methods for prediction of
cognitive outcomes in childhood among a general paediatric
population have been identified in the literature for
comparison. However, the multivariable prediction models
that have been developed for similar outcomes using
traditional linear and logistic regression methods identified
many of the same predictors including maternal education,
socioeconomic status, income, and employment status [35–37].
An advantage of this study is that through use of feature
importance metrics, partial dependence plots, and an
exploration of the most important interactions, a model that is
relatively interpretable was developed where one can understand
the decision logic of the model. In addition, an explanation of the
key components required to understand the development and
interpretation of a ML model were provided.

The findings of the study are subject to limitations. Bias in ML
models can arise in data collection, model development, and model
evaluation [38]. First, the BASELINE cohort is subject to sampling
bias as the majority of those recruited were low-risk, primiparous
womenwhomay not be representative of the pregnant population as
a whole. In addition, those who remain engaged in cohort studies
systematically differ from those who do not. As shown in
Supplementary Table S2 participants whose child completed IQ
assessments at age 5 were more likely to be older non-smokers, with
higher education and lower depression scores, and were more likely
to have infants with a higher birthweight, head circumference, and
gestational age. The generalisability, equity, and utility of a predictive
model at a population level is dependent on data that is
representative of the population [39].

Sampling bias, such as that outlined here, is a significant
challenge in the application of ML methods to address
population health problems. Often the most vulnerable
populations, including the homeless, intravenous drug users,
and ethnic minorities, are absent from large cohort studies,
but may be among the populations who would benefit most
from optimised prediction models. As the potential to collect
large quantities of data increases, through electronic health
records, electronic devices, and wearable technology,
researchers must ensure that minority groups are represented
and barriers to participation which may be cultural, financial,
linguistic, or time-bound must be removed.

The evaluation of a ML model should be performed across
diverse patient groups, on data that was not used in the
training process. In this study external validation on an
unseen cohort was not performed and therefore the

performance metrics of the model should be interpreted
with caution. As the dataset used in this study was
imbalanced with regard to the outcome of interest the
entire dataset was used in the training process and internal
validation only was applied. The next step is to now validate
this model using an unseen cohort, ideally one that is more
representative of the population as a whole.

A further limitation associated with the use of pre-existing
birth cohort data is that features, such as genetic information and
parental IQ, which have an important causal relationship with the
outcome of interest and would likely improve predictive power,
may not have been collected [40]. However, a model relying on
genetic data would not be feasible to implement at a population
level.

ML was used in this study to optimise the predictive power of
the model. Risk prediction and early intervention is a form of
secondary prevention, and should occur in conjunction with
primary prevention strategies to reduce the causative factors.
However, a limitation of ML is that it does not inform us of the
causal relationship between the features and the outcome. While
many of the predictive features identified in this study, such as
parental education [41], have an existing literature base to
demonstrate a causal relationship with the outcome, predictors
should not be assumed to be causal factors.

Finally, there are important ethical issues to be considered.
Identifying children at risk of poor cognitive outcomes risks
labelling a child early in life. It is well documented that early
labelling can negatively impact both parent and teacher
expectations, as well as the child’s own self-concept [42, 43].
These risks are especially pertinent for children and families who
may be incorrectly identified as at risk on a screening or risk
prediction tool and who are unlikely to benefit from early
intervention. For those correctly identified, the question is
whether these risks are outweighed by the benefit of providing
early intervention.

In conclusion, the application of machine learning to address
population health challenges has received much less attention
than its application in the clinical setting. Disparities in cognitive
development can be seen as early as 2 years of age, but unabated
will amplify over time, making early intervention essential [44].
The socioenvironmental exposures of a child in early life are
modifiable, and enrichment of the early environment has been
shown to be both feasible, achievable, and effective in improving
cognitive outcomes, if appropriately resourced [45, 46]. However,
the effectiveness of such intervention programmes is dependent
upon the early and accurate identification of the children who are
most likely to benefit.

Current population based strategies which rely on the
presence of a delay in development prior to intervention miss
the opportunity for pre-emptive intervention in the period of
optimal neuroplasticity, and risk missing the most vulnerable
who may not present to routine screening. The perinatal period is
a unique window of opportunity where there is almost universal
contact between the public and healthcare professionals, and is an
ideal time for engagement with high-risk mother-infant dyads. As
clinical disciplines strive toward a personalised approach to
medicine, population health must not be left behind.
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Investigation into how machine learning can be used to assist in
addressing disparities in cognitive development in early
childhood—a significant population health challenge, rooted in
the social determinants of health and exacerbated by
inequity—requires further research. This targeted approach
must be considered in the context of wider changes to
educational policy, planning policy, and economic policy
which have a central role to play in addressing disparities in
childhood development.
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