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Abstract
Objectives This study aimed to review the types and applications of fully Bayesian (FB) spatial–temporal models and

covariates used to study cancer incidence and mortality.

Methods This systematic review searched articles published within Medline, Embase, Web-of-Science and Google Scholar

between 2014 and 2018.

Results A total of 38 studies were included in our study. All studies applied Bayesian spatial–temporal models to explore

spatial patterns over time, and over half assessed the association with risk factors. Studies used different modelling

approaches and prior distributions for spatial, temporal and spatial–temporal interaction effects depending on the nature of

data, outcomes and applications. The most common Bayesian spatial–temporal model was a generalized linear mixed

model. These models adjusted for covariates at the patient, area or temporal level, and through standardization.

Conclusions Few studies (4) modelled patient-level clinical characteristics (11%), and the applications of an FB approach

in the forecasting of spatial–temporally aligned cancer data were limited. This review highlighted the need for Bayesian

spatial-temporal models to incorporate patient-level prognostic characteristics through the multi-level framework and

forecast future cancer incidence and outcomes for cancer prevention and control strategies.
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Abbreviations
PRISMA Preferred reporting items for systematic review

and meta-analysis

PQL Penalized quasi-likelihood

EB Empirical Bayes

FB Fully Bayesian

MCMC Markov chain Monte Carlo

INLA Integrated nested Laplace approximations

IQR Interquartile range

GLMM Generalized linear mixed models

CAR Conditional autoregressive

BYM Besag, York and Mollie

APC Age–period cohort

AFT Accelerated failure time

ANOVA Analysis of variance

SLA Second-level area

ESM Electronic supplementary material

Introduction

Globally, cancer is still the leading cause of mortality

(Cancer Research UK 2019). In 2018, over 17 million new

cancer cases were diagnosed, and its incidence is projected

to increase by 62% by 2040 with a growing ageing popu-

lation (Cancer Research UK 2019). Cancer incidence and

outcomes vary over space (geographical areas) and time,

but there are still challenges in understanding this variation
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(Goodman et al. 2014). Key obstacles for cancer modelling

involve wide year-to-year fluctuations and a small number

of cases in sparsely populated areas leading to

unstable estimates.

The traditional statistical approach, frequentist infer-

ence, is based on the likelihood function, which is used to

derive parameter estimates. Bayesian approaches use

probability to measure uncertainty in predictions or infer-

ence estimates and incorporate spatial and temporal

dependencies through the specification of prior distribu-

tions (Austin et al. 2002). Bayesian approaches can over-

come modelling issues prevalent in cancer research (non-

normality, small sample size, missing data, clustered data

structure). Spatio-temporal analyses that simultaneously

investigate space–time variation can identify disease pat-

terns that persist or evolve systematically over time across

spatial units, through series of maps to identify areas or

periods with extreme risks (Bernardinelli et al. 1995).

Understanding this variation and its attributable factors will

help to contribute to our understanding of disease aetiology

and prevention, monitor healthcare access and plan

healthcare interventions. Bayesian spatial–temporal models

have proved to be beneficial and provide more convincing

evidence of true variations than separate spatial or time-

series or cross-sectional analysis (Bernardinelli et al. 1995;

Carroll et al. 2016, 2018; Knorr-Held 2000; Lawson et al.

2017; Waller et al. 1997). Misleading results could be

obtained using traditional non-spatial models in data which

reveal a spatial or temporal correlation since individuals in

the same area or year tend to have similar characteristics,

and these need to be accounted for in the analysis (Banerjee

and Dey 2005; Dormann 2007). In the last two decades,

due to improvements in the quality and maturity of clinical

registries and advancements in computing speed and

capacities over the years, studies have developed Bayesian

spatial–temporal models which incorporate spatial corre-

lation, temporal correlation and space–time interaction.

Thus, Bayesian spatial–temporal models investigating

variation in cancer incidence and mortality outcomes

across areas over time are integral in contributing to cancer

control and management as they provide a unified approach

to the modelling process. However, to the best of our

knowledge, there exists no systematic evaluation of the use

of these models in the literature. Therefore, this study

aimed to review the types and applications of Bayesian

spatial–temporal models and covariates used to study

cancer incidence and mortality outcomes between 2014

and 2018. Our a priori hypothesis was that there is a lack of

studies incorporating individual patient data as well as use

of these models for forecasting.

Methods

Search strategy

The methodology of this review followed the Preferred

Reporting Items for Systematic Reviews and Meta-Anal-

yses (PRISMA) guidelines (Moher et al. 2009). We

employed a broad selection strategy of these databases,

MEDLINE, EMBASE, Web of Science, in February 2019,

with few restrictions to minimize the risk of bias (Elec-

tronic supplementary material/ESM-1). A manual search

was also undertaken through a reference list of articles and

Google Scholar.

The titles and abstracts of articles were screened, and

then, the papers identified were evaluated and selected after

reading the full text and the inclusion criteria (WW).

Studies were included after any disagreements on the

inclusion of a particular study were resolved between the

two authors (AE, WW).

Selection criteria

This systematic review focused on the use of Bayesian

spatial–temporal models as the study design. It included

studies utilizing a fully Bayesian (FB) approach that

applied spatial–temporal models on cancer incidence and

mortality outcomes in area and time and published between

2014 and 2018. The spatial–temporal model was defined as

the model, which includes a geographic index for locations

and a time index to estimate disease risk over space and

time with spatial and temporal terms or spatial–temporal

interaction terms (Bernardinelli et al. 1995). The ESM-2

displays the model formula of all included studies. Studies

were excluded if their models were applied on non-cancer,

purely spatial models or time-series models, utilized non-

Bayesian inference, or studies which did not mention any

use of spatial–temporal model terms. Articles were also

excluded if they were a review, had no English full-text

access and were Conference abstracts and Editorial mate-

rials or studies which primarily used penalized quasi-like-

lihood (PQL) estimation (empirical Bayes/EB approach).

We focused on peer-reviewed articles published between 1

January 2014 and 31 December 2018 to ensure this review

was undertaken based on most recent literature due to a

near doubling of articles published particularly in the last

five years and continual development of recent models

upon earlier models (Bernardinelli et al. 1995; Waller et al.

1997; Knorr-Held 2000). EB approach using PQL estima-

tion is performed under a frequentist perspective (Ugarte

et al. 2015b), and this review focused only on studies with

FB approach which generally uses Markov chain Monte

Carlo (MCMC) or integrated nested Laplace

674 W. Wah et al.

123



approximations (INLA) techniques (Ugarte et al. 2014). In

FB approach, the prior distribution is completely specified

before any data is observed, which considers the uncer-

tainty of model parameters (Ugarte et al. 2014). EB

approach is an approximation of the FB approach, and the

prior parameters are estimated from the data which con-

ditions the estimation on point estimates of model param-

eters (Ugarte et al. 2014).

Quality assessment

All included studies were scored using a standardized item

list to assess the quality and risk of bias (Harris et al. 2016).

The checklist comprises eight questions with scores rang-

ing from 0 to 2 for each question (0 = Poor, 1 = Moderate,

2 = Good) and a maximum overall score of 16. The quality

level of the overall score ranges from low to very high

(quality level—Low\ 8, Medium = 8–10, High = 11–13,

Very high[ 13). Assessment of quality of included studies

was done by one reviewer (WW) first, and the second

reviewer (AE) independently checked each study to

quantify the scoring and overall evaluation of quality. Any

disagreement was resolved through discussion between the

two scorers.

Data extraction

Descriptive details were author name, publication year,

data collection design, cancer incidence/outcomes, areal

units, temporal units, objectives, key findings and appli-

cations. Methodological details such as whether the model

adjusted for patient-, area- or temporal-level covariates,

standardized for demographic covariates, analytical models

used, model structures (spatial, temporal and space–time

models), were also collected.

Results

Data

Figure 1 depicts a PRISMA flow chart for the selection

process. After reviewing the abstracts from databases and

searching of reference lists and Google Scholar, 217 arti-

cles were assessed for full-text review, and of these, 38

studies were finally included.

Table 1 shows the summary characteristics of all

included studies. All studies made use of observational data

from registries. Incidence rates were more commonly

studied than mortality rates or survival time. All studies

were applied to explore spatial patterns over time (ESM-3).

Twenty (53%) studies aimed to study the association

between outcomes and risk factors. The areal units studied

in these spatial–temporal models varied from large areas at

the state level to the smaller grid (30 9 30 km) level

(ESM-4). The number of areas ranged from 18 to 8073

(median = 94, interquartile range/IQR = 48–478). Studies

used different levels of temporal aggregation, including

annual cases (5–43 years) to periods (0.5- to 8-year

groups).

Covariates

Studies incorporated a wide range of covariates, most

commonly demographics (82%), socio-economics (37%),

lifestyle (8%), clinical (11%), meteorological (11%),

environmental (8%) and access to healthcare (8%)

(Table 1, ESM-4). These models adjusted for covariates at

the patient level (18%), area or temporal level (58%) and

through standardization of patients’ demographic charac-

teristics (45%). Four studies included patient-level clinical

characteristics, stage, grade, radiation therapy, surgery,

cancer subtype, previous cancer history (Carroll et al.

2018; Cramb et al. 2016; Hurtado Rua and Dey 2016;

Carroll and Zhao 2018).

Analytical methods

ESM-5 shows a summary structure of spatial–temporal

models.

Twenty-six (68%) studies used generalized linear mixed

models (GLMM) over space and time.

GLMM with spatial, spatial–temporal random effects,
temporal fixed/random effects

The earliest (Bernardinelli et al. 1995) and majority of

spatial–temporal GLMM models for areal data have been

extended from the spatial Besag, York and Mollie/BYM

model, through a pair of unstructured and structured ran-

dom effects (Besag et al. 1991). The unstructured random-

effects term in the BYM model accounts for over-disper-

sion and allows for unknown factors, and the spatially

structured random effects account for spatial or temporal

dependence by allowing for correlated heterogeneity

between areas or years using spatially or temporally

structured random-effects, through conditional autoregres-

sive/CAR prior. These studies used CAR prior in the spa-

tial (Adin et al. 2017; Carroll and Zhao 2018; Cramb et al.

2017; Herrmann et al. 2015, 2018; Jafari-Koshki et al.

2014, 2017; Kang et al. 2015; López-Abente et al. 2014;

Ocaña-Riola et al. 2016; Sharafi et al. 2018; Sparks 2015;

Ugarte et al. 2015a; Vicens et al. 2014; Yin et al. 2014) and

temporal (Yin et al. 2014) random effects to smooth risk

estimates across areas and years with adjacent boundaries

and also in the spatial–temporal interaction (Cramb et al.
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2017; Jafari-Koshki et al. 2014, 2017; Kang et al. 2015;

López-Abente et al. 2014; Ocaña-Riola et al. 2016; Sharafi

et al. 2018) to allow spatially correlated area-specific dif-

ferences in trends). Other studies (Goicoa et al. 2016, 2018;

Ugarte et al. 2014, 2016, 2017) used Leroux CAR to

overcome negative correlations between far-apart areas

arising from CAR prior (Leroux et al. 2000).

Some studies included time as fixed-effect covariates

(Herrmann et al. 2015, 2018), thus stratifying time into a

few blocks of time and estimating the effect of each block

independently from the others. Other studies allowed each

areal unit for a separate linear (Bernardinelli et al. 1995;

Cramb et al. 2017; Jafari-Koshki et al. 2014, 2017; Kang

et al. 2015; López-Abente et al. 2014; Ocaña-Riola et al.

2016; Sharafi et al. 2018) and quadratic terms (Ocaña-Riola

et al. 2016) or flexible, dynamic first- or second-order

random walks (Adin et al. 2017; Kang et al. 2015; López-

Abente et al. 2014; Sparks 2015; Ugarte et al. 2014, 2015a,

Vicens et al. 2014) in the temporal random effects.

The following studies (Adin et al. 2017; Carroll and

Zhao 2018; Goicoa et al. 2016, 2018; Kang et al. 2015;

López-Abente et al. 2014; Sparks 2015; Ugarte et al.

2014, 2015a, 2016) applied the Knorr-Held (2000) model

to account for spatial–temporal interactions (varying area-

specific trends in disease risk) besides spatial (CAR) and

temporal trends (first- or second-order random walks)

adjustment. Four different types of interactions with

structured matrices were constructed as the Kronecker

product of the corresponding structure matrices of the main

spatial and temporal random effects. When spatial–tem-

poral evolution patterns of cancer were not the same among

all age groups, interactions of age with area and time were

incorporated in the Knorr-Held (2000) model to detect

different regional and temporal effects on age groups

(Goicoa et al. 2016).
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Fig. 1 Flow diagram of selection of included studies
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To overcome identifiability issues due to confounding

effects among spatial, temporal main and interaction terms

in four different types of spatial–temporal interactions in

GLMM (Knorr-Held 2000) and B-spline models (Ugarte

et al. 2017), Goicoa et al. (2018) suggested to reparame-

trize the spatial, temporal and spatial–temporal random

effects using the spectral decompositions of their precision

matrices. This is to ensure that the appropriate identifia-

bility constraints will be well defined to achieve plausible

results with a less extra-computing time required to fit the

reparametrized models.

GLMM with two-level spatial and spatial–temporal

effects (Ugarte et al. 2015a, 2016) were used when small

areas were aggregated in larger regions, and the frequency

of disease was very low. Their simulation results showed

the two-level model with second-level interaction was

better than the single-level spatial models. These models

were appropriate to identify potential differences in the

implementation of health policies at each level of spatial

aggregation. They had a shorter computational time when

second-level area/SLA interactions instead of the first-level

area were used since the number of restrictions needed for

model identifiability was significantly reduced. These

models could be difficult to fit if the number of SLA was

too large due to a complex computation of the posterior

marginal of the hyper-parameters.

The spatial–temporal model with the spatially varying

random effects allowed for spatially structured variation in

risk over time to measure disparities in cancer incidence

between two small subpopulations by varying their risk

differences between areas over time (Sparks 2015).

GLMM with shared spatial, temporal and spatial–temporal
random effects

Following a shared component, joint modelling framework,

joint models (shared spatial, temporal and spatial–temporal

random-effects) showed a better performance than the

Table 1 Summary of characteristics of included studies

Item Category n (%)

Design of data collection Existing registry 38 (100%)

Cancer incidence/outcomesa Incidence 19 (50%)

Mortality/survival (dichotomous) 19 (50%)

Survival time 3 (8%)

Applicationsa Explore spatial–temporal patterns 38 (100%)

Identify association with risk factors 20 (53%)

Covariatesa Demographic 31 (82%)

Socio-economic 14 (37%)

Life styles 3 (8%)

Clinical 4 (11%)

Meteorological 4 (11%)

Environmental 3 (8%)

Health care access 3 (8%)

Covariates adjustment in modelsa Patient level 7 (18%)

Area or temporal level 22 (58%)

Standardization of patients’ demographic characteristics 17 (45%)

Statistical modelsa Generalized linear mixed models 26 (68%)

Spatio-temporal Multivariate mixture models 4 (11%)

P-spline and B-spline models 3 (8%)

Spatial–temporal survival accelerated failure time models 2 (5%)

Spatio-temporal flexible parametric relative survival models 2 (5%)

Two-stage spatially dependent variable selection models 1 (3%)

Poisson log-linear model with clustering and smoothing components 1 (3%)

Latent process spatio-temporal autoregressive model 1 (3%)

Besag, York and Mollié moving average model 1 (3%)

Spatio-temporal moving average risk smoothing model 1 (3%)

Transformation class of spatio-temporal cure rate CAR survival models 1 (3%)

aStudy used more than 1 categories
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separate models with an independent set of random effects

(Knorr-Held and Best 2001). Without having the actual risk

factor data, these shared-components models were

demonstrated to identify some common unmeasured or

unknown risk factors among multiple population groups

like gender, race, birth cohorts (Cramb et al. 2015; Dreassi

2018; Yin et al. 2014), or shared and divergent geographic

and temporal patterns of various diseases with common

risk factors (Mahaki et al. 2018; Raei et al. 2018). Since

cancer has a complex aetiology and long latency, these

studies considered a temporal lag association and sensi-

tivity analyses with residential history, data sparseness and

remoteness groupings. However, these models had a limi-

tation assuming independence between the shared compo-

nents and the impossibility of assessing interaction among

covariates.

GLMM with spatial, age, period, cohort and space–period
random effects

These studies used the multivariate spatial–temporal age–

period cohort (APC) models to analyse the gender-specific

impact of age, time, date of birth and area on stomach and

pancreatic cancer mortality trends (Etxeberria et al. 2017;

Papoila et al. 2014). APC models were suitable to exhibit

effects of cohort trends in cancer aetiology and mortality

but assumed minimal migration between areas and had

restraint on spatially varying covariates.

Nautiyal and Holford (2018) developed the spatial–

temporal APC models to incorporate spatial uncertainty in

cancer survival estimates at a smaller spatial resolution and

smooth back-calculated cancer incidence from survival

estimates in a spatial–temporal sparse setting. Models

detected varying time trends in lung cancer risk across

areas. Piece-wise exponential survival models were used to

estimate cause-specific hazards while assuming incident

cases die from cancer or other causes or migrate out of an

area.

Latent process spatio-temporal autoregressive models

To adjust for spatial–temporal interactions in Bayesian

hierarchical models, Utazi et al. (2018) developed the

latent process spatio-temporal autoregressive model to

characterize a spatio-temporal dependence dynamically

with a temporal autoregressive random-effect and a spatial

autocorrelation captured via Leroux CAR. The first-order

autoregressive term corresponds to the random effects at

each time point being dependent on the value of the ran-

dom effect at the previous time point to enable correlation

between consecutive time periods. This model was shown

to be at least effective as CAR-based priors for modelling

the latent process of spatial–temporal interactions and

appropriate to detect the overall spatial pattern in the risk

estimates and characterize the presence of heterogeneity

due to the clustering of areas with distinct risks. But, when

spatially varying covariates are included, those models for

a latent process may change as these explain residual

autocorrelation in the data.

Spatio-temporal flexible parametric relative survival
models

Due to possible uncertain accuracy of the recorded cause of

death in population-based cancer studies, the Bayesian

spatial–temporal flexible parametric relative survival

models allowed to measure net survival with time-depen-

dent and continuous covariates and obtain smooth survival

predictions (Cramb et al. 2016, 2017). These models

determined temporal changes in relative survival differ by

areas while adjusting for individual-level risk factors,

spatial, time-varying and spatial–temporal interaction

components. Restricted cubic splines were used to flexibly

smooth the cumulative baseline excess hazard with

improved model fit.

Spatial–temporal accelerated failure time (AFT) models

When the Cox-proportional hazards model assumptions

(proportionality of hazard/survival odds with covariates)

did not hold, AFT models were used to enable a direct

relationship with the logarithm of survival time with both

the risk factors, spatial, temporal and spatial–temporal

random effects (Carroll and Zhao 2018; Carroll et al.

2018). AFT models with spatial and temporal frailties were

demonstrated to study unmeasured confounders beyond

known individual demographic and clinical risk factors and

to detect changes in survival over time due to a major

disaster or health policy legislation. Despite multiple

temporal random effects in a single linear predictor, the

model did not experience identifiability issues due to

appropriately recovered parameters.

Transformation class of spatio-temporal cure rate CAR
survival models

Hurtado Rua and Dey (2016) developed the transformation

class of cure rate survival models to adjust for the depen-

dent survival times in the same area and year-of-diagnosis

and incorporated a cure fraction (proportion of patients

who never experience an event of death) while considering

assumptions of the time-varying proportional effect of the

hazard function and a time constant odds ratio between two

covariates sets. This model included a nonparametric

baseline survival function and modelled cure rates through

a covariate specification to capture the effect of covariates
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on spatial–temporal survival function. It allowed for the

inclusion of patient-level covariates and interaction

between those covariates in the cure rate specification.

Spatio-temporal multivariate mixture models

Compared to the Knorr–Held spatio-temporal interaction

model, the mixture models within the model selection

setting were shown to have an improved model fit of rare

diseases by borrowing information from related, more

common diseases while accounting for unmeasured expo-

sures like health service availability, behavioural, envi-

ronmental and demographic factors shared among

multiple-related diseases with different rarity and common

aetiology (Carroll et al. 2016, 2017a, b, Lawson et al.

2017). The mixture model selection methods applied a

model probability to linear predictors in distinguishing

whether the most appropriate linear predictor was spatial,

spatial–temporal or a mixture of two, to indicate a differ-

ence in aetiology between diseases. These models can

overcome some issues (collinearity, excess parameters than

a possible number of MCMC iterations) in variable selec-

tion approach which usually requires one to choose a fixed-

set of predictors before final model fit and incorporates

collinear predictors lowering the required number of

modelling parameters with improved model fit. The limi-

tation involved a lack of flexibility with linear predictors

and some identification issues arising from the model

selection process (model mis-specification and collinearity

between fixed and random effects).

Two-stage spatially dependent variable selection models

Choi and Lawson (2018) developed the two-stage spatially

dependent variable selection models to detect the spatially

varying subset of covariates with common temporal

dependence. Two-stage framework separately estimates the

regression coefficients with a temporal trend depending on

both space and space–time random components. It could

reduce the confounding bias where covariate varying in

space and time correlated with spatial–temporal random

effects when estimating the regression coefficients of that

covariate on outcomes. It showed better goodness-of-fit

performance than the covariates-only model in a simulation

study.

Poisson log-linear model with clustering and smoothing
components

Standard Bayesian spatial–temporal models for risk esti-

mation used the spatial–temporal autocorrelation to esti-

mate smoothed disease risk, whereas scan statistics

identified clusters of areas with higher risks compared to

adjacent areas. The integrated clustering and smoothing

components model allowed areal units in different clusters

with different baseline levels of disease risk and detected

both cluster congregations and average risk levels variation

over time (Lee and Lawson 2014). It yielded better per-

formance in risk estimation than the Knorr-Held 2000;

Rushworth et al. 2014 models. However, limitations to

model performance could arise when a disease is rare, and

clustering models did not adjust for covariates to estimate

the unexplained risk component for unknown aetiologic

covariates and model multiple diseases simultaneously.

P-spline and B-spline models

One-, two- and three-dimensional B-splines were used to

model space–time interactions (Ugarte et al. 2017). The

one-dimensional P-splines were appropriate when the

number of small areas was not large since they incorpo-

rated CAR spatial random effects via a covariate matrix to

produce local smoothing considering adjacent regions with

a shared border and outperformed the two-dimensional

P-splines models to handle spatial heterogeneity. The two-

and three-dimensional P-splines (interaction P-spline and

ANOVA-type P-spline) offered large-scale smoothing

because splines consider distance through B-spline basis

using some knots and were computationally better alter-

natives when the number of small regions was high.

Interactions with age, space and time in the one- and two-

dimensional P-spline models were flexible to capture dif-

ferent mortality trends by age groups (Goicoa et al. 2017).

The simulation study with different spatial–temporal sce-

narios showed three-dimensional P-spline models as a good

alternative to Knorr–Held (2000), CAR, BYM moving

average and spatial moving average risk-smoothing models

particularly in the analysis of highly sparse spatial–tem-

poral data (Adin et al. 2017).

Assessment of quality

Based on the modelling study quality assessment checklist,

scores ranged from 9 to 16 (ESM-6). Twenty-four were

considered very high quality, eleven high quality and three

medium quality. The median quality score across 38

studies was relatively very high, 15 out of 16.

Discussion

The applications of FB spatial–temporal models were

mainly for exploring spatial–temporal patterns, followed

by studying the association of risk factors with cancer

incidence or mortality outcomes. However, few models

included patient-level data and applications in terms of
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forecasting of spatial–temporally arranged cancer inci-

dence and mortality outcomes were limited. With regards

to forecast uncertainty, Bayesian spatial-temporal models

are particularly suitable since they can potentially embed

different sources of error in a joint probabilistic forecasting

model (Bennett et al. 2015). FB methods are preferable

where complete and accurate estimations of uncertainty are

warranted (Ugarte et al. 2014). Schmid and Held (2004)

demonstrated an APC model using a random walk prior in

period or cohort effects for prediction of future stomach

cancer mortality rates while allowing for space–time

interaction. Other studies developed spatial–temporal

P-splines models using PQL estimation in the EB approach

for future forecasts of cancer mortality (Etxeberria et al.

2014; Ugarte et al. 2012). FB spatio-temporal models with

age, birth cohort, time and space components were devel-

oped to forecast mortality and life expectancy at the small-

area level in England and Wales (Bennett et al. 2015).

Projections of cancer incidence and outcomes using FB

spatio-temporal models at the small-area level are of sig-

nificant interest to health services planning, health policy

decision-making and appropriate resource utilization.

In the spatial–temporal modelling context, few studies

accounted for patient-level clinical characteristics which

are of prognostic importance. These clinical risk factors

were included as fixed-effect covariates in the studies that

modelled spatio-temporally clustered cancer survival data

using AFT, flexible parametric relative survival and

transformation class of cure survival modelling frame-

works while accounting for spatial and temporal correla-

tion. The studies generally used a two-stage approach in

which individual-level conditional probabilities of disease

were modelled first and then used as offset terms to adjust

for the spatial–temporal models. Combining individual

information from direct surveys and aggregated data from

other sources have shown to improve the quality of small-

area indicators and provide better results than purely area-

level models (Jackson et al. 2008). The ability to incor-

porate both individual- and area-level information in the

Bayesian spatial–temporal model in a multi-level frame-

work could improve the causal inference on the relation-

ship while reducing ecological fallacy. Thus, the spatial–

temporal models incorporating individual clinical charac-

teristics and underlying biology could explore potential

aetiologic factors. Future studies would be useful to iden-

tify how known individual risk factors can be included as

spatially and temporally varying coefficients in the spatial–

temporal models. Thus, exploring clinical variation across

geographic and temporal units is useful to explore the

latent combination of unmeasured risk factors beyond

known risk factors.

A large variety of modelling methods were used to study

cancer incidence or mortality outcomes, within the

Bayesian spatial–temporal modelling framework. This

depended on data types, outcomes and applications, and

there is currently no consensus on which modelling

approach is preferable. Most Bayesian spatial–temporal

models have been done within a GLMM framework

including fixed effects and spatial, temporal and spatial–

temporal random effects spanning the wide variety of

distributional characteristics. Most studies used a spatial

CAR model to account for spatial and temporal trends and

area-specific differences in trends, which was relevant for

the investigation of local risk factors. First- or second-order

random walk terms were commonly used in temporal

random effects, but they may not capture the complexity of

the temporal trends over longer time periods. Spline

models allowed a more flexible estimation of complex

temporal patterns particularly in applications covering

extended periods, large-scale spatial smoothing like

investigating a source of pollution dispersing with a dis-

tance and highly sparse spatial–temporal data. In the non-

parametric approach in the spatial–temporal interactions,

area-specific one-, two-, three-dimensional B-splines and

P-splines models were modelled for each region to allow

nonlinear area-specific trends for varying disease risk.

The majority of studies were scored as very high quality.

Most studies which developed novel methods carried out a

sensitivity analysis for changes in the prior and hyper-prior

distribution and that informed the reliability and robustness

of results. Simulation studies which investigated the per-

formance of new method comprehensively reported the

conduct of uncertainty and sensitivity analysis in different

spatial–temporal scenarios. However, studies that applied

the existing models could have included comprehensive

uncertainty and sensitivity analyses. Besides data quality,

the validity of the outcome of spatial–temporal analyses

was greatly dependent on the spatial scale and aggregation.

Different aggregation level of temporal random-effects had

a negligible impact on model goodness of fit and estimation

of fixed effects, whereas spatial aggregation had an influ-

ence (Kang et al. 2015). Thus, future spatial–temporal

models should consider a multi-level framework and pre-

diction uncertainty in different clinical and spatial–tem-

poral scenarios using validation and simulation studies.

These FB spatial–temporal models could be useful for

public health researchers to detect changing time trends in

risk across regions to quantify effects of regional policies

and formulate a hypothesis for cancer aetiology and fore-

casting of cancer burden to guide efforts to reduce

disparities.

Studies commonly undertook model fitting and infer-

ence using MCMC followed by INLA. MCMC (exact

method for Bayesian inference) is widely used as the

posterior distributions cannot be obtained in closed form in

an FB approach (Ugarte et al. 2014). The INLA approach
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(approximate method) reduces the computational burden of

Bayesian inference taking advantage of sparse precision

matrices. It provides accurate results in substantially less

computing time than MCMC algorithms due to a lower

number of constraints needed to identify the model (Ugarte

et al. 2017).

The strength of the review was the assessment of bias

following the PRISMA guidelines and a quality checklist,

screening of relevant articles through 3 databases and

Google Scholar. This review might have missed studies

published in other languages. Despite the screening and

extraction of data by one reviewer, duplication of this

process by a primary reviewer and validation with another

reviewer could have reduced the likelihood of missing

relevant studies. Significant variations in methodology,

covariate inclusion, cancer types and outcomes within the

included studies precluded a meta-analysis. Finally, pub-

lication bias cannot be entirely avoided.

Conclusion

Studies used a diverse range of modelling approaches with

different prior distributions in spatial, temporal and spatial–

temporal interaction effects depending on nature of data,

outcomes and applications. Few studies (11%) modelled

patient-level clinical characteristics, and the applications of

an FB approach in the forecasting of spatial–temporally

arranged cancer data was limited. Therefore, this review

highlighted the need for future Bayesian spatial-temporal

models to incorporate patients-level prognostic character-

istics through the multi-level framework and predict future

cancer incidence and outcomes for prevention and control

strategies.
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