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Introduction

In a previous Hints and Kinks, we discussed the role of

causal inference in tasks of health services research (HSR)

using examples from health system interventions (Moser

et al. 2020). In the present Hints and Kinks, we more for-

mally introduce a principled framework for causal infer-

ence. Specifically, we discuss in more detail the role of

counterfactuals for the definition of a causal effect and the

‘association is not causation’ adage. We continue on the

example of a hospital merger (HM) as a health system

intervention.

Counterfactuals and causal effect

We introduced counterfactuals as hypothetical outcomes

which are actually not observed in a real-world setting

(Hernán 2004). We used an example of a HM, where we

were interested in the causal question whether a HM

reduces hospital readmissions (Moser et al. 2020). To

answer this question, we need to define a causal effect, a

statistical measure which relates probabilities of hospital

readmissions when (1) every patient is treated under the

situation of a HM versus (2) the HM would not have been

implemented. Note that we never observe one of the two

situations, because either the HM is implemented or not,

but not both. We now introduce a formal notation for

causal inference which allows us to mathematically define

a causal effect.

For each patient, we would like to know his or her

outcome (here, a hospital readmission) if the HM had not

been implemented (denoted as YnoHM) together with the

outcome under the HM (denoted as YHM). The superscripts

denote the counterfactual outcomes we can formalize, but

which are actually not observed: Only YHM can be observed

if the HM is implemented. An average causal effect in the

study population can then be defined by the risk difference

Probability(YHM = 1)–Probability(YnoHM = 1), abbrevi-

ated as RDCausal. Note that we could also use other risk

measures, for example a relative risk, for the definition of a

causal effect. The choice of the used effect measure

depends on the research question because the underlying

scale (i.e., an additive scale for a risk difference or multi-

plicative scale for a risk ratio) influences its final inter-

pretation (Hernán and Robins 2020).

An important question remains: How can we assess an

effect measure based on outcomes which are actually not

observed? One could compare the outcomes in the region

with HM to outcomes in a ’control’ region with no HM.

Table 1 shows hypothetical patients with (known) coun-

terfactual outcomes and actually observed outcomes (de-

noted with subscripts YnoHM, YHM, YObserved). For example,

the patient with ID 5 was treated in the HM region with no

observed hospital readmission (YObserved = 0). The

observed outcome is equal to the counterfactual outcome in

the HM region (YObserved = YHM = YHM = 0). Note that if

this patient would have been treated in the control region,

he or she would have had a readmission (YnoHM = 1).

Because this patient is actually only observed in the HM

region, one will never observe the outcome of the control

region (YnoHM is missing). The mathematical notation for

counterfactuals might be initially confusing, yet it is a

necessary component for a causal inference framework.

What is the average causal effect in the study population

from Table 1? We get that the risk difference RDCausal is
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zero, because Probability(YHM = 1) = 3/5 and Probabil-

ity(YnoHM = 1) = 3/5. Thus, the HM does not reduce

hospital readmissions.

Association versus causation

An associational effect measure generally compares risks

in subsets of a study population by conditioning on certain

study characteristics (see Fig. 1) (Hernán 2004). In the

example of Table 1, one relates the risk of hospital read-

missions among patients in the HM region with the risk

among patients in the control region. Let us define

RDAssociational

:¼ Probability YObserved ¼ 1 among patients in the HM region
� �

� Probability YObserved ¼ 1 among patients in the control region
� �

;

as the associational risk difference in the study population.

We obtain from Table 1 that the first expression of

RDAssociational is 0 (two patients were treated in the HM

region without an observed hospital readmission) and the

second expression 1/3 (three patients were treated in the

control region with one hospital readmission). Thus,

RDAssociational is equal to 0–1/3 = –1/3, i.e., the risk of

hospital readmissions in the HM region is lower compared

to the risk in the control region.

The difference between the derived causal effect

RDCausal and the associational effect RDAssociational leads to

the famous ‘association is not causation’ adage. Likely

because of this adage, many researchers in HSR avoid any

causal terminology, especially when they use ‘only’

observational data (Hernán 2018). They argue that the

above comparison of outcomes between an ‘intervention’

and a ‘control’ region does not allow for any causal con-

clusions because the regions differ in several ways, for

example, due to the case mix of treated patients, the skill-

grade mix of medical personnel or the availability of health

care services. When a study design randomly allocates

patients before hospital entry to either the HM region or the

control region (and patients and health care providers

perfectly comply with that assignment), researchers would

interpret statistical findings as causal. But in fact, many

studies in HSR are observational studies without a random

allocation of patients to treatment groups. Still, often only

‘descriptive’ and ‘modeling’ approaches are then used to

support decision-making in health systems, even if the

background is inherently causal. Whether the reported

effect measure should be used from a causal inference

approach or from descriptive and modeling approaches

strongly depends on the intended HSR question.

How can researchers integrate ‘causality’ in HSR? Our

above introduced components of a framework for causal

inference is the backbone for modern causal inference.

Modern causal inference allows for inference which

mimics a situation as if patients would have been assigned

by random allocation, despite using an observational study

design. Topics for recent calls of causal inference

approaches in HSR include, for example, comparative

effectiveness research, payment scheme evaluations, health

care utilization or the use of simulation studies (see

Table 2). Principles of modern causal inference are

described and explained in several textbooks (van der Laan

and Sherri 2011; Pearl et al. 2016; Hernán and Robins

2020).

Table 1 Study population of five patients

ID Region YnoHM YHM YnoHM YHM YObserved

1 No HM 0 1 0 NA 0

2 No HM 0 1 0 NA 0

3 No HM 1 1 1 NA 1

4 HM 1 0 NA 0 0

5 HM 1 0 NA 0 0

HM Hospital merger, NA Not available, YnoHM Counterfactual out-

come in the region with no HM, YHM Counterfactual outcome in the

HM region, YnoHM Counterfactual outcome in the region with no HM,

actually observed in the real world, YHM Counterfactual outcome in

the HM region, actually observed in the real world, YObserved
Observed outcome

In bold: the patient described in the manuscript

Patient study population

vs.vs.

AssociationCausation

Region with no hospital merger Hospital merger region

Fig. 1 Graphical explanation of ‘association versus causation’ using

the example of a hospital merger as a health system intervention.

Study outcome: Hospital readmissions. ‘Association’ compares

relationships in subsets of a study population, indicated by the

separated triangles. For example, one compares the risk of hospital

readmissions among patients treated in a region with a hospital

merger and among patients treated in a region without a hospital

merger. ‘Causation’ compares situations (i.e. ‘what-if’ questions)

between hypothetical study populations. For example, one compares

hospital readmissions in a population where every patient would have

been treated in a region with a hospital merger with a population

where every patient would have been treated in the same region, but

without a hospital merger Source: Figure adapted from Hernán (2004)
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Discussion

In the present Hints and Kinks, we introduced components

for a principled framework for causal inference in HSR.

Because ‘causal inference’ is conceptually different from

‘description’ or ‘modeling’, HSR needs the integration of a

causal inference framework which includes a specific

notation, definitions and analysis techniques to extend the

traditional tasks of ‘description’ and ‘modeling’. Public

health decision-making which solely relies on associational

effect measures might lead to inappropriate decisions

because questions about optimal decision-making are

inherently causal. We plea that students and researchers in

the field of HSR are aware of the different available

frameworks to successfully address ‘description’, ‘model-

ing’ and ‘causal inference’, depending on the intended

research question.
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