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Objective: The purpose of this study was to investigate the sex correlations of particulate
matters (PM2.5, PM10, PM2.5–10), NO2 and NOx with ASCVD risk in the UK Biobank
population.

Methods: Among 285,045 participants, pollutants were assessed and correlations
between ASCVD risk were stratified by sex and estimated using multiple linear and
logistic regressions adjusted for length of time at residence, education, income,
physical activity, Townsend deprivation, alcohol, smocking pack years, BMI and rural/
urban zone.

Results:Males presented higher ASCVD risk than females (8.63% vs. 2.65%, p < 0.001).
In males PM2.5, PM10, NO2, and NOx each were associated with an increased ASCVD
risk >7.5% in the adjusted logistic models, with ORs [95%CI] for a 10 μg/m3 increase were
2.17 [1.87–2.52], 1.15 [1.06–1.24], 1.06 [1.04–1.08] and 1.05 [1.04–1.06], respectively. In
females, the ORs for a 10 μg/m3 increase were 1.55 [1.19–2.05], 1.22 [1.06–1.42],
1.07 [1.03–1.10], and 1.04 [1.02–1.05], respectively. No association was observed in
both sexes between ASCVD risk and PM2.5–10.

Conclusion: Our findings may suggest the possible actions of air pollutants on
ASCVD risk.
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INTRODUCTION

Continuous exposure to air pollution over an extended period poses a significant public health threat
[1]. Alarmingly, a significant proportion of Europeans living in urban areas, up to 30%, are exposed
to air pollution levels exceeding European air-quality standards [2]. Air pollution is recognized as
one of the most significant yet often overlooked threats to human health [3–6]. The World Health
Organization (WHO) estimates that air pollution is responsible for 7.6% of global mortality [7].

Recently, the 2019 European Society of Cardiology (ESC) guidelines emphasized the impact of air
pollution on cardiovascular diseases [8]. Numerous studies have established a direct link between
long-term exposure to air pollution and an increased risk of cardiovascular events, including
myocardial infarction, stroke, and cardiovascular mortality [9, 10]. Furthermore, controlled
environment studies have demonstrated that exposure to particulate matter induces systemic
vascular responses, oxidative stress, endothelial dysfunction, and plaque formation [11].
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Atherosclerotic cardiovascular disease (ASCVD) is a
leading cause of mortality and contributes significantly to
healthcare costs worldwide [12]. However, few
investigations have focused on individual air pollutants,
such as particulate matter (PM2.5, PM10), nitrogen oxide
(NOx), and nitrogen dioxide (NO2), and their correlations
with ASCVD risk [11, 13, 14].

Numerous investigations have shown sex differences for
ASCVD risk and cardiovascular diseases [15, 16], including
coronary heart disease [17], carotid atherosclerosis [18],
hypertension [19], atrial fibrillation ([20], pp. 1994–2016),
cardiometabolic disorders [21] and stroke [22].

Furthermore, sex differences in air pollution-related
cardiovascular diseases have been highlighted [23] with an
impact on circulatory and respiratory mortality [24]. But there
has been limited research into the relationship between air
pollution and ASCVD risk, and particularly concerning sex
differences. This connection is still incomplete [23, 25]. Thus,
the purpose of this study was to investigate, firstly, the association
of particulate matters, nitrogen dioxide and nitrogen oxide with
10 year ASCVD risk in the overall population, and secondly, in
sex-stratification analyses these associations, in the UK Biobank
population.

METHODS

UK Biobank Population
Between 2006 and 2010, the UK Biobank recruited a total of
502,478 individuals aged 38–73 years from 22 cities across the
UK, representing approximately 5.5% of the overall UK
population. The participants provided comprehensive
information through questionnaires, computer-assisted
interviews, and a variety of physical and functional
measurements. Additionally, samples of blood, urine, and
saliva were collected for further analysis [26]. Further details
about the cohort’s protocol can be found in relevant literature
[27, 28].

Ethical Considerations
Prior to participation, all individuals provided electronic
informed consent, and the UK Biobank obtained ethical
approval from the North-West Multi-center Research Ethics
Committee (MREC), which encompassed the entirety of the
United Kingdom. The study adhered to the principles outlined
in the Declaration of Helsinki and received approval from the
Northwest—Haydock Research Ethics Committee (protocol
code: 21/NW/0157, approval date: 21 June 2021). For
details: [29].

Study Population
This study included a total of 399,067 participants from the UK
Biobank who did not have missing data for ASCVD risk
calculation and had no previous cardiovascular (CV) events.
“CV diseases, including heart attack, angina, and stroke, were
identified based on doctor diagnoses reported in the
questionnaires” [30]. Moreover, this study also excluded

112,022 participants due to missing data for air pollutants
(N = 33,774) and for other covariates (N = 78,248), resulting
in a final analysis cohort of 287,045 participants (Figure 1).

Estimated 10Years ASCVD Risk
To estimate the 10 years ASCVD risk, the study utilized the
Pooled Cohort Equations (PCE) model [31, 32]. The PCE enables
the calculation of sex- and race-specific estimates of the 10-year
risk of ASCVD for adults between the ages of 40 and 79. A PCE
score of 7.5% or higher indicates a high risk of ASCVD, while a
score below 7.5% suggests a lower risk [33–36].

Air Pollution
The annual average concentrations of PM2.5, PM10, PM2.5–10,
NO2, and NOx were estimated using the Land Use Regression
(LUR) model, which was developed as part of the European Study
of Cohorts for Air Pollution Effects project [37, 38]. The LUR
model incorporated geospatial predictor variables derived from a
Geographic Information System, including factors such as traffic,
land use, and topography. These variables were used to calculate
the spatial variations in annual average air pollutant
concentrations.

For this study, the residential addresses provided by
participants during the baseline visit in the UK Biobank were
utilized to link the air pollution exposures of each participant to
their records. The exposure data for PM2.5, PM10, PM2.5–10, NO2,
and NOx were collected in 2010. In the case of NO2 and PM10,
annual concentration data were available for multiple years (2005,
2006, 2007, and 2010 for NO2; 2007 and 2010 for PM10). The
averaged values of NO2 and PM10 from these years were included
in the analysis [39].

Covariates
Blood pressure measurements, including systolic and diastolic
blood pressure (SBP, DBP), were recorded twice using an
automated BP device (Omron 705 IT electronic blood pressure
monitor; OMRON Healthcare Europe B.V. Kruisweg
577 2132 NA Hoofddorp) at the assessment center [40, 41].

The determination of diabetes status was based on several
criteria: receiving anti-diabetic medication, being diagnosed with
diabetes by a doctor, or having a fasting glucose
concentration ≥7 mmol/L [41, 42]. Medications were identified
through the question: “Do you regularly take any of the following
medications?”. Self-reported information on medication use was
thus collected. Detailed information on biological parameters can
be found in the UK Biobank protocol [43]. Body mass index
(BMI) was calculated as weight (in kg) divided by height squared
(in meters) and categorized as high (BMI > 30 kg/m2),
moderate (BMI between 25 and 30 kg/m2), and low (less
than 25 kg/m2) [44].

Education level was classified into three categories according
to the International Standard Classification for Education
(ISCED): high (college or university degree (20 years of
education), NVQ or HND or HNC or equivalent [19 years of
education)], moderate [O levels/GCSEs or equivalent (10 years of
education), A/AS levels or equivalent (13 years of education),
other professional qualifications such as nursing or teaching, etc.
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(15 years of education)], and low [none of the aforementioned
(7 years of education)] [45]. Income level was defined as high
(greater than £52,000 per year), moderate (between £18,000 and
£51,999 per year), and low (less than £18,000 per year) [36].
Townsend deprivation index scores were calculated using data
aggregated for the participants’ residential postcodes [46].

Current tobacco smokers were identified as participants who
responded “yes, on most or all days” or “yes, only occasionally” to
the question “do you smoke tobacco now.” Smoking pack-years
were calculated as the average number of packs smoked per day
multiplied by the total number of years of smoking in lifetime. In
the UK Biobank, the number of years of smoking is calculated by
subtracting the age of starting smoking from the age smoking was
stopped (or age at inclusion for current smokers) [47, 48].

Alcohol drinker status was determined based on participants’
responses regarding their alcohol consumption: “current,” “past,”
or “never” [35, 49].

Participants’ physical activity levels were evaluated using a
revised version of the International Physical Activity
Questionnaire (IPAQ) [50], which they completed on a tablet
computer during the initial assessment. The self-reported physical
activity data were analyzed using the approach developed by
Bradbury et al. [51]. The total MET-hours per week were
categorized as low (<10.0), moderate (10.0–49.9), and high
(≥50 excess MET-hours/week) based on the IPAQ guidelines [52].

Statistical Analysis
The characteristics of the study population were presented using
median and 25th and 75th percentiles for continuous variables,

and numbers and proportions for categorical variables. Group
comparisons were conducted using either Student’s t-test or
Mann-Whitney test for continuous variables, and Pearson’s χ2
test for categorical variables. The primary objective of the study
was to examine the correlation between air pollutants and
estimated 10 years ASCVD risk levels, as well as the risk of
high cardiovascular (CV) risk (estimated 10 years ASCVD risk
exceeding 7.5%). Multiple regression models were employed to
analyze the relationship between air pollutants and estimated
10 years ASCVD risk. The results were expressed as beta
coefficients (for each 10 μg/m3 increase) with 95% confidence
intervals for the estimated 10 years ASCVD risk, and as odds
ratios (OR) with 95% confidence intervals for the risk of
exceeding 7.5% estimated 10 years ASCVD risk. The beta
coefficients and OR were calculated per unit increase in 10 μg/
m³ for air pollutants, and with the reference being the lowest
quartile values of air pollutants (OR = 1.00). Firstly, the models
were adjusted for various factors, including sex, length of time at
residence, education, income level, physical activity, Townsend
deprivation quintiles, alcohol consumption, smoking pack years,
BMI categories, and rural/urban zone. Secondly, the models were
stratified by sex. Analyses were stratified by sex through sex
differences have been observed for ASCVD risk [15, 53], for air
pollution impact on health [54, 55] and an interaction between
sex and each air pollutants in this study (p for interaction, p <
0.001). Interactions were examined by including simultaneous
sex, individual air pollutants and their interaction term. The
adjustments were justified by their relationship with ASCVD risk
and CV risk: education [56], income [30, 57], physical activity

FIGURE 1 | Flowchart (United Kingdom, 2021).
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[58], smoking pack years [59], Townsend deprivation [30, 60]
and BMI [61].

Multicollinearities between air pollutants have been
investigated by spearman correlation coefficients. PM2.5, PM10,
PM2.5–10, NO2 and NOX were considered independent in the
different models due to their observed collinearities. Air
pollutants were considered as continuous covariables and then,
were categorized by quartiles (Q4 was the higher levels of air
pollutants and Q1 the lowest quartile of levels). Non-linear
relationship between air pollutants and CVD has been
observed in previous studies [62, 63]. Thus, unadjusted non-
linear splines of air pollutants with ASCVD risk were performed
by polynomial quadratic regressions.

Statistics were performed using SAS software (version 9.4; SAS
Institute, Carry, NC). A p-value < 0.05 was considered statistically
significant.

RESULTS

The characteristics of the overall participants are shown in
Table 1. Males (n = 136,200, 47.4%) presented a higher mean
estimated 10 years ASCVD risk compared to females (8.63% vs.
2.65%, p < 0.001), higher levels of high physical activity (23.49%
vs. 19.39%, p < 0.001), of high educational level (37.68% vs.
35.35%, p < 0.001), of high income (30.60% vs. 24.82%, p < 0.001),
of high BMI levels (23.75% vs. 21.91%, p < 0.001) but same
proportion of rural residency (15.66% vs. 15.45%, p = 0.113)
(Table 1). The mean (SD) concentrations of air pollutants were
higher in males than in females, for PM10 (19.10 [18.00–20.35]
μg/m3 vs. 19.14 [18.05–20.41] μg/m3, respectively, p < 0.001) and
NO2 (27.80 [22.68–33.62] μg/m3 vs. 27.93 [22.77–33.79] μg/m3,
respectively (p < 0.001) but not PM2.5, PM2.5–10 and NOx. The
Spearman correlation coefficients among the five air pollutants

TABLE 1 | Characteristics of the study population (United Kingdom, 2021).

Males N = 136,200 Females N = 150,845 p-value

Age (years) (mean, SD) 56.12 8.17 55.55 7.97 <0.001
Estimated 10 years ASCVD risk (%) (mean, SD) 8.63 6.68 2.65 3.01 <0.001
High level of ASCVD risk (>7.5%) 62,918 46.25% 9,089 6.03% <0.001
Physical activity <0.001
High 31,988 23.49% 29,247 19.39%
Moderate 69,482 51.01% 80,058 53.07%
Low 34,730 25.50% 41,540 27.54%

BMI (kg/m2) (mean, SD) 27.65 4.11 26.83 5.06 <0.001
BMI <0.001
High 32,348 23.75% 33,050 21.91%
Moderate 68,236 50.10% 55,028 36.48%
Low 35,616 26.15% 62,767 41.61%

Education <0.001
High 51,321 37.68% 53,324 35.35%
Moderate 59,263 43.51% 70,769 46.92%
Low 25,616 18.81% 26,752 17.73%

Income <0.001
High 41,684 30.60% 37,446 24.82%
Moderate 70,323 51.63% 79,090 52.43%
Low 24,193 17.76% 34,309 22.74%

Quintiles Townsend deprivation <0.001
Q1 27,477 20.17% 29,079 19.28%
Q2 27,842 20.44% 30,194 20.02%
Q3 27,326 20.06% 30,682 20.34%
Q4 26,623 19.55% 31,020 20.56%
Q5 26,932 19.77% 29,870 19.80%

Antihypertensive medication 27,297 20.04% 22,570 14.96% <0.001
Diabetes 9,606 7.06% 6,899 4.58% <0.001
Black people 460 0.34% 752 0.50% <0.001
Current alcohol drinkers 128,966 94.69% 138,880 92.07% <0.001
Current smoking 15,865 11.65% 12,926 8.57% <0.001
Smoking pack years 9.55 16.96 5.85 11.97 <0.001
HDL cholesterol (mmol/L) (mean, SD) 1.29 0.31 1.60 0.37 <0.001
Total cholesterol (mmol/L) (mean, SD) 5.58 1.08 5.88 1.10 <0.001
SBP (mmHg) (mean, SD) 138.91 15.84 126.71 17.41 <0.001
Rural population 21,333 15.66% 23,303 15.45% 0.113
Length of time at residence (years) (mean, SD) 16.59 12.16 16.64 11.97 0.221
PM10 (μg/m3) (median, IQR) 19.10 [18.00–20.35] 19.14 [18.05–20.41] <0.001
NO2 (μg/m3) (median, IQR) 27.80 [22.68–33.62] 27.93 [22.77–33.79] <0.001
PM2.5 (μg/m3) (median, IQR) 9.91 [9.26–10.53] 9.92 [9.27–10.55] 0.108
PM2.5–10 (μg/m3) (median, IQR) 6.10 [5.84–6.63] 6.10 [5.84–6.62] 0.107
NOx (μg/m

3) 41.80 [33.74–50.39] 42.04 [33.98–50.61] 0.096
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are shown in Supplementary File S1. Splines of air pollutants
with ASCVD risk are shown in Figure 2 and presented the non-
linear relationships between air pollution and ASCVD risk.

When considering the WHO 2005 recommendations [64] for
annual toxicity threshold 46.04% of males and 46.55% of females
were over the threshold for PM2.5 and 30.90% and 31.78%,
respectively for PM10, and 10.98% and 11.45%, respectively for
NO2. However, when considering the 2021 WHO
recommendations [65], nearly 100% of the population showed
over toxicity thresholds (Table 2).

The associations between individual air pollutants and
continuous ASCVD risk according to overall population and
sex are shown in Table 3.

In overall population, PM2.5, PM10, NO2, and NOx each were
associated with an increased continuous ASCVD risk in the
adjusted linear models. No significant correlation was observed
in males in the adjusted model between increased ASCVD risk
and PM2.5–10, except when considering PM2.5–10 as a continuous
variable.

In males, PM2.5, PM10, NO2, and NOx each were associated
with an increased continuous ASCVD risk in the adjusted linear
models. The beta coefficients (95% CI) of increase in continuous
ASCVD risk for a 10 μg/m3 increase in PM2.5, PM10, NO2, and
NOx were 1.776 (1.392; 2.159), 0.434 (0.233; 0.635), 0.158 (0.111;
0.205) and 0.111 (0.085; 0.136), respectively. No significant
correlation was observed in males in the adjusted model
between increased ASCVD risk and PM2.5–10 (Table 3).

Among females, both PM2.5, PM10, PM2.5–10, NO2, and NOx

were associated with an increased continuous ASCVD risk in the
adjusted linear models. The beta coefficients (95% CI) of increase
in continuous ASCVD risk for a 10 μg/m3 increase in PM2.5,
PM10, PM2.5–10, NO2, and NOx were 0.617 (0.447; 0.788), 0.160
(0.072; 0.248), 0.221 (0.053; 0.389), 0.049 (0.027; 0.069), and 0.041
(0.029; 0.052), respectively (Table 3).

When considering ASCVD risk >7.5%, in overall population,
PM2.5, PM2.5–10, PM10, NO2, and NOx were all associated with an
increased ASCVD risk >7.5% in the adjusted logistic models
(Table 4).

FIGURE 2 | Non-linear splines of air pollutants with atherosclerotic cardiovascular disease risk (United Kingdom, 2021).

TABLE 2 | Proportion of males and females exposed to toxicity thresholds of Particle Matter 2.5, Particle Matter 10 and Nitrogen dioxide according to World Health
Organization 2005 and [65] classifications (United Kingdom, 2021).

Males Females

WHO 2005 (%) WHO 2021 (%) WHO 2005 (%) WHO 2021 (%)

PM2.5 46.04 100.00 46.55 100.00
PM10 30.90 98.99 31.78 98.94
NO2 10.98 100.00 11.45 99.99
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TABLE 3 | Adjusted beta coefficients and 95% confidence interval for air pollution concentrations with continuous atherosclerotic cardiovascular disease risk
(United Kingdom, 2021).

Overall population

Q1 Q2 Q3 Q4 Continuous

PM2.5 Ref. −0.033 (−0.064; 0.001) 0.067 (0.035; 0.099) 0.169 (0.134; 0.203) 1.242 (1.038; 1.446)
PM10 Ref. −0.020 (−0.052; 0.011) 0.073 (0.041; 0.104) 0.073 (0.039; 0.0106) 0.320 (0.214; 0.426)
PM2.5–10 Ref. 0.016 (−0.015; 0.046) 0.005 (−0.026; 0.036) 0.022 (−0.009; 0.053) 0.296 (0.094; 0.497)
NO2 Ref. −0.006 (−0.038; 0.027) 0.151 (0.118; 0.183) 0.111 (0.076; 0.147) 0.105 (0.079; 0.129)
NOX Ref. −0.065 (−0.096; 0.005) 0.113 (0.081; 0.145) 0.185 (0.150; 0.219) 0.078 (0.065; 0.093)

Males

Q1 Q2 Q3 Q4 Continuous

PM2.5 Ref. −0.041 (−0.100; 0.019) 0.121 (0.061; 0.181) 0.227 (0.163; 0.291) 1.776 (1.392; 2.159)
PM10 Ref. −0.037 (−0.096; 0.022) 0.085 (0.026; 0.144) 0.99 (0.036; 0.162) 0.434 (0.233; 0.635)
PM2.5–10 Ref. 0.024 (−0.034; 0.083) 0.014 (−0.044; 0.072) 0.009 (−0.049; 0.068) 0.323 (−0.055; 0.702)
NO2 Ref. 0.003 (−0.058; 0.063) 0.209 (0.148; 0.271) 0.168 (0.101; 0.234) 0.158 (0.111; 0.205)
NOX Ref. −0.100 (−0.181; 0.010) 0.186 (0.126; 0.246) 0.253 (0.188; 0.319) 0.111 (0.085; 0.136)

Females

PM2.5 Ref. −0.019 (−0.045; 0.007) 0.022 (−0.003; 0.049) 0.096 (0.067; 0.124) 0.617 (0.447; 0.788)
PM10 Ref. −0.002 (−0.028; 0.024) 0.056 (0.029; 0.082) 0.036 (0.008; 0.064) 0.160 (0.072; 0.248)
PM2.5–10 Ref. 0.013 (−0.013; 0.039) −0.008 (−0.029; 0.024) 0.027 (0.001; 0.053) 0.221 (0.053; 0.389)
NO2 Ref. −0.019 (0.046; 0.007) 0.091 (0.064; 0.118) 0.065 (0.036; 0.095) 0.049 (0.027; 0.069)
NOX Ref. −0.036 (−0.062; 0.009) 0.045 (0.018; 0.071) 0.111 (0.083; 0.140) 0.041 (0.029; 0.052)

Models were adjusted for length of time at residence, education, income level, physical activity, Townsend deprivation quintiles, alcohol consumption, smoking pack years, BMI categories,
and rural/urban zone.
Air pollutants were considered as continuous covariables and then, were categorized by quartiles (Q4 was the higher levels of air pollutants and Q1 the lowest quartile of levels).
Beta coefficient of continuous variable of air pollutants were expressed by 10 μg/m3.

TABLE 4 | Adjusted Odds ratio and 95% confidence interval for air pollution concentrations with atherosclerotic cardiovascular disease risk >7.5% (United Kingdom, 2021).

Overall population

Q1 Q2 Q3 Q4 Continuous

PM2.5 Ref. 1.11 [1.07–1.15] 1.19 [1.14–1.23] 1.24 [1.19–1.28] 2.05 [1.80–2.34]
PM10 Ref. 1.04 [1.01–1.07] 1.09 [1.06–1.13] 1.09 [1.06–1.13] 1.18 [1.09–1.26]
PM2.5–10 Ref. 1.03 [1.01–1.07] 1.04 [1.01–1.08] 1.04 [1.01–1.08] 1.11 [1.01–1.21]
NO2 Ref. 1.14 [1.10–1.18] 1.23 [1.18–1.28] 1.23 [1.18–1.18] 1.06 [1.04–1.108]
NOX Ref. 1.10 [1.07–1.14] 1.22 [1.18–1.27] 1.27 [1.22–1.32] 1.05 [1.03–1.06]

Males

Q1 Q2 Q3 Q4 Continuous

PM2.5 Ref. 1.12 [1.08–1.16] 1.20 [1.16–1.25] 1.26 [1.20–1.32] 2.17 [1.87–2.52]
PM10 Ref. 1.04 [1.01–1.08] 1.09 [1.05–1.13] 1.08 [1.04–1.13] 1.15 [1.06–1.24]
PM2.5–10 Ref. 1.04 [0.99–1.08] 1.03 [0.99–1.07] 1.03 [0.99–1.07] 1.12 [0.97–1.29]
NO2 Ref. 1.15 [1.11–1.20] 1.23 [1.18–1.29] 1.23 [1.17–1.29] 1.06 [1.04–1.08]
NOX Ref. 1.12 [1.07–1.16] 1.25 [1.20–1.30] 1.29 [1.23–1.35] 1.05 [1.04–1.06]

Females

PM2.5 Ref. 1.07 [0.99–1.15] 1.12 [1.04–1.21] 1.14 [1.06–1.24] 1.55 [1.19–2.05]
PM10 Ref. 1.03 [0.96–1.11] 1.10 [1.02–1.18] 1.11 [1.03–1.20] 1.22 [1.06–1.42]
PM2.5–10 Ref. 1.02 [0.95–1.09] 1.05 [0.97–1.12] 1.07 [0.99–1.14] 1.24 [0.95–1.62]
NO2 Ref. 1.09 [1.00–1.17] 1.21 [1.12–1.31] 1.20 [1.10–1.31] 1.07 [1.03–1.10]
NOX Ref. 1.06 [0.99–1.14] 1.12 [1.04–1.21] 1.18 [1.09–1.28] 1.04 [1.02–1.05]

Models were adjusted for length of time at residence, education, income level, physical activity, Townsend deprivation quintiles, alcohol consumption, smoking pack years, BMI categories,
and rural/urban zone.
Air pollutants were considered as continuous covariables and then, were categorized by quartiles (Q4 was the higher levels of air pollutants and Q1 the lowest quartile of levels).
Odds ratio of continuous variable of air pollutants were expressed by 10 μg/m3.
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In males PM2.5, PM10, NO2, and NOx each were associated
with an increased ASCVD risk>7.5% in the adjusted logistic
models. The ORs [95% CI] of increase in continuous ASCVD risk
for a 10 μg/m3 increase in PM2.5, PM10, NO2, and NOx were
2.17 [1.87–2.52], 1.15 [1.06–1.24], 1.06 [1.04–1.08] and
1.05 [1.04–1.06], respectively. No significant association was
observed in males in the adjusted model between increased
ASCVD risk and PM2.5–10 (Table 4).

Among females, both PM2.5, PM10, NO2, and NOx were
associated with an increased ASCVD risk>7.5% in the
adjusted logistic models. The ORs (95% CI) of increase in
continuous ASCVD risk for a 10 μg/m3 increase in PM2.5,
PM10, NO2, and NOx were 1.55 [1.19–2.05], 1.22 [1.06–1.42],
1.07 [1.03–1.10], and 1.04 [1.02–1.05], respectively. No
significant association was observed in males in the adjusted
model between increased ASCVD risk and PM2.5–10 (Table 4).

For both sexes, when considering the higher quartile groups
compared to the lowest quartile, similar results were expressed
(Tables 3, 4). When considering the ASCVD risk >7.5%, in males
PM2.5, PM10, NO2, and NOx each were associated with an
increased ASCVD risk >7.5% in the adjusted logistic models.
The ORs [95% CI] for Q4 vs. Q1 were for PM2.5, PM10, NO2, and
NOx, 1.26 [1.20–1.32], 1.08 [1.04–1.13], 1.23 [1.17–1.29], and
1.29 [1.23–1.35], respectively. And for females, the ORs [95% CI]
for Q4 vs. Q1 were for PM2.5, PM10, NO2, and NOx,
1.12 [1.04–1.21], 1.10 [1.02–1.18], 1.21 [1.12–1.31] and
1.12 [1.04–1.21], respectively (Table 4). No significant
association between PM2.5–10 and ASCVD risk was observed
in both sexes.

Sensitive Analysis
When adding the “time of enrollment” in analyses, similar results
were observed (Supplementary File S2).

DISCUSSION

The primary finding of this study revealed a significant
association between each individual air pollutants and an
elevated risk of ASCVD in both males and females. Few sex
differences were observed between individual air pollutants and
ASCVD risk in this study. These results are consistent with
previous studies in UK Biobank cohort [25, 39, 66–68].

Sex Differences
In 2022, a meta-analysis shown that CV events and mortality
were increased by short exposure to PM2.5, in same average rate in
both sexes [69]. But, when considering the long-term exposure to
PM2.5 a sex differences was observed for ischemic heart disease
[25]. Nevertheless, it remains controversial whether substantial
differences would exist in air pollution with CV events between
sexes. Numerous studies reported similar risk between sexes
[70–72], while others reported differences in sexes [73, 74]. To
date, no biological mechanism may explain the plausible
differences observed in studies.

While, no differences in risk was observed between sexes,
accurate health risk assessment remains essential to delivery

optimal preventive medical care, and it is no longer acceptable
to use a one-size-fits-all model of cardiovascular risk stratification
which ignores sex differences [75]. Many tools or equations of
cardiovascular risk assessment widely recommended by
guidelines were developed based on sex-specific models along
with different effect estimations even for the same risk factor [33,
76]. In forthcoming research concerning the interplay between air
pollution and cardiovascular wellbeing, it is advisable to
consistently present outcomes specific to sex. In the context of
preventing and treating ischemic heart disease (IHD), data from
both the US and China revealed a notable trend. It indicated that
women were at a lower likelihood of receiving accurate diagnoses
and receiving preventative care compared to men. This tendency
might be connected to a perception of reduced risk among
clinicians and patients towards women [77, 78].

Epidemiological Evidence
The findings of this study are consistent with prior studies
examining the connection between air pollution and ASCVD
risk [14, 79], heart failure [39], and ischemic heart disease [80].
Furthermore, air pollution has been associated with various other
cardiovascular diseases, including cardiac arrhythmias and arrest,
cerebrovascular disease, and venous thromboembolism [81, 82].
A study estimated that air pollution contributes to a global excess
mortality of 8.8 million annually, resulting in a reduction of
2.9 years in life expectancy [83]. However, limited research has
focused on different risk factors for ASCVD, such as blood lipid
levels, hypertension, and diabetes [84–86].

Epidemiological studies have shown an association between
prolonged exposure to PM2.5 and atherosclerosis, as measured by
various indicators, such as carotid intima-media thickness,
coronary, aortic calcifications, and ankle-brachial index [87].
Reduction in PM2.5 concentration has been associated to a
decrease in the progression of intima-media carotid thickness
[88]. The authors of the meta-analysis published in 2014 have
found that prolonged exposure to particulate matter was
associated with an increased incidence of coronary events [9].
Specifically, for every 5 μg/m3 increase in PM2.5 exposure, there
was a 13% rise in non-fatal acute coronary events, and for every
10 μg/m3 increase in PM10 exposure, there was a 12% increase in
coronary events. No relationship was found with other pollutants
[9]. Another meta-analysis in 2015 demonstrated that PM2.5 and
NO2 were significantly associated with diabetes [89].
Additionally, an increase in PM2.5 concentration by 10 μg/m3

has been linked to a 1–3 mmHg increase in systolic blood
pressure a few days after exposure [90].

Moreover, the composition of PM stands as a pivotal aspect to
deliberate, as certain discoveries highlight the heightened
cardiovascular harm attributed to carbon-based particles
originating from combustion-related sources like road traffic,
fossil fuel usage, and wood combustion [91]. These combustion
sources also contribute predominantly to the emission of nitrogen
dioxide (NO2). A comprehensive analysis of the cardiovascular
repercussions stemming from prolonged exposure to NO2

demonstrated a 13% surge in cardiovascular-related mortality
following a mere 10 μg/m3 rise in annual NO2 concentrations
[92]. The impact of ozone appears to exhibit a lesser magnitude,
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as some studies on long-term exposure imply a minor upswing in
causes of cardiopulmonary mortality. Notably, this effect was
only observable during warmer seasons and not in a year-round
assessment. Numerous investigations have emphasized a robust
link between extended exposure to air pollution and instances of
acute myocardial infarction. In an expansive prospective study
carried out across Europe, incremental yearly elevations of 10 μg/
m3 in PM10 and 5 μg/m3 in PM2.5 were correlated with amplified
risks of myocardial infarction, reaching 12% and 13%
correspondingly [9].

Pathophysiological Mechanisms
Exposure to PM, particularly exposure to the polycyclic aromatic
hydrocarbons present on the surface of PMoriginating from traffic,
displayed a correlation with elevated levels of 8-hydroxy-2′-
deoxyguanosine [93]. This biomarker is recognized for its
reliability in indicating oxidative DNA damage in individuals
subjected to such exposure, including individuals like traffic
policemen, bus drivers, and garage workers [94]. Similarly, the
occurrence of etheno-DNA adducts was double in diesel engine
workers when compared to their non-diesel-exposed counterparts
[95]. Various research studies have reported links between air
pollution exposure and heightened plasma levels of oxidized low-
density lipoprotein, homocysteine, as well as inflammatory
markers and fibrinogen [96]. More recently, escalated
concentrations of intercellular adhesion molecule-1 and vascular
cell adhesionmolecule-1 have been tied to exposure to air pollution
[97]. The impact of air pollution exposure might facilitate the
activation of inflammatory genes, as evidenced by studies revealing
upregulation of antioxidant genes and a decline in overall DNA
methylation [97]. Multiple investigations have affirmed that air
pollution exposure triggers a robust oxidative stress response upon
PM entry into the lungs. However, this pulmonary oxidative
reaction is intensified through the activation of various
enzymatic pathways, ultimately culminating in a systemic
vascular oxidative stress reaction. After incubating endothelial
cell cultures with serum obtained from voluntarily exposed
subjects, the production of superoxide anions (reactive oxygen
species [ROS]) was observed. This production followed a dose-
response pattern directly linked to the quantity of inhaled PM2.5

[98]. The predominant role of ROS production was further
confirmed by in vitro studies, revealing that superoxide
dismutase reverses the adverse vascular effects subsequent to
diesel exhaust exposure [99]. Studies have shown that the
oxidative stress response was predominantly linked to the
surface compounds coating diesel particles, including transition
metals, polycyclic aromatic hydrocarbons, and quinones [99].
While oxidative stress primarily associates with particles,
gaseous components such as NO2 are also contributors to ROS
generation, forming peroxynitrite [93].

Exposure to diesel exhaust, in contrast to filtered air, resulted
in impaired endothelium-dependent vasodilation and diminished
endothelial NO bioavailability [100]. Endothelial dysfunction
stands as an early indicator of atherosclerosis [101], with some
initial functional consequences evident across various vascular
beds. A decrease in patients ischemic threshold was observable,
suggesting a detrimental influence of air pollution on myocardial

blood flow regulation [102]. Air pollution favored the production
of oxidized low-density lipoprotein and the release of other highly
oxidized phospholipids [101]. These proatherogenic molecules
permeated the subendothelial space, triggering the activation of
endothelial cells. This activation was marked by the release of
proinflammatory adhesion molecules, such as vascular cell
adhesion molecule-1 and monocyte chemotactic protein-1
[101]. Furthermore, air pollution was linked to the
impairment of antiatherogenic molecules like high-density
lipoprotein [103]. A reduction in the antioxidant capacity of
high-density lipoprotein was also observed in an animal study,
with ultra-fine particles exhibiting a more pronounced effect
compared to PM2.5 [101]. Consequently, exposure to air
pollution, such as PM and NO2 [104], triggered vascular
inflammation, accumulation of lipids in foam cells, and
progression of arterial plaque, leading to increase the ASCVD
risk [103].

Limitations
The study’s primary strength is its large sample size, which is
drawn from the UK Biobank cohort. However, the cross-sectional
design of the study limits the establishment of causal relationships
and precludes determining reverse causation. Although the study
had a response rate of only 5.5%, the robust sample size and high
internal validity minimize the likelihood of participant bias
influencing the observed associations [105, 106]. The
generalizability of the study’s results to other age groups or
ethnic populations may be limited since it focused exclusively
on middle-aged participants from the UK. Nevertheless, the UK
Biobank employed standardized protocols for data collection,
ensuring replicability across all participants.

Several limitations should be acknowledged. Firstly, socio-
economic data, medical history, and comorbidities were collected
through self-reported questionnaires or physician assertion,
which introduces the potential for bias. Additionally, the
study’s temporal scope is restricted since data collection
occurred only between 2006 and 2010. This study estimated
the weights (regression coefficients) of air pollutants by
treating each as a continuous variable. However, air pollutants
were not linearly associated with ASCVD risk (Figure 2).
Although examining non-linearity relations with the
construction of quartiles of air pollutant may provide more
information, the construction of the quartiles would not be
sufficient. It is important to note that air pollution exposure
may be either overestimated or underestimated, as the study did
not gather data on pollution exposure in work environments, and
only a single measurement of air pollution was available. The lack
of address mobility is a major limitation in this study for the
investigation of the relationship between air pollution exposure
and ASCVD risk. Due to the high number of participants
excluded due to missing data, the results observed should not
be representative of the entire UK Biobank cohort. However, even
though this study primarily focused on a specific population, it
can still provide valuable insights as a reference when examining
populations in other regions. Moreover, the results may not
generalize to other populations, given that most participants in
the UK Biobank were of European descent.
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Conclusion
This study provides evidence that exposure to air pollutants, such
as PM2.5, PM10, PM2.5–10, NO2 and NOx, throughout the year is
associated with an increased risk of ASCVD in both males and
females. These findings suggest the potential effects of air
pollutants on ASCVD risk. They also highlight the need for
implementing appropriate preventive health policies for
populations affected by air pollution. Given the link between
air pollution and ASCVD risk, it is crucial to gather information
on individuals residing in polluted and urban areas or during
periods of elevated air pollution levels.
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